

FACULTY OF BUSINESS, ECONOMICS, AND LAW

partialCI: An R Package for the Analysis of Partially Cointegrated Time Series

R/Finance 2017, Chicago

Jonas Rende University of Erlangen-Nürnberg, Germany Department of Statistics and Econometrics jonas.rende@fau.de

May 20, 2017

Objectives and key issues to be covered today

What is partial cointegration?

How does it work?

How to use partialCI?

Where is it helpful?

What is partial cointegration (PCI)? – A weakening of cointegration allowing
for transient and permanent components in the residual series ¹

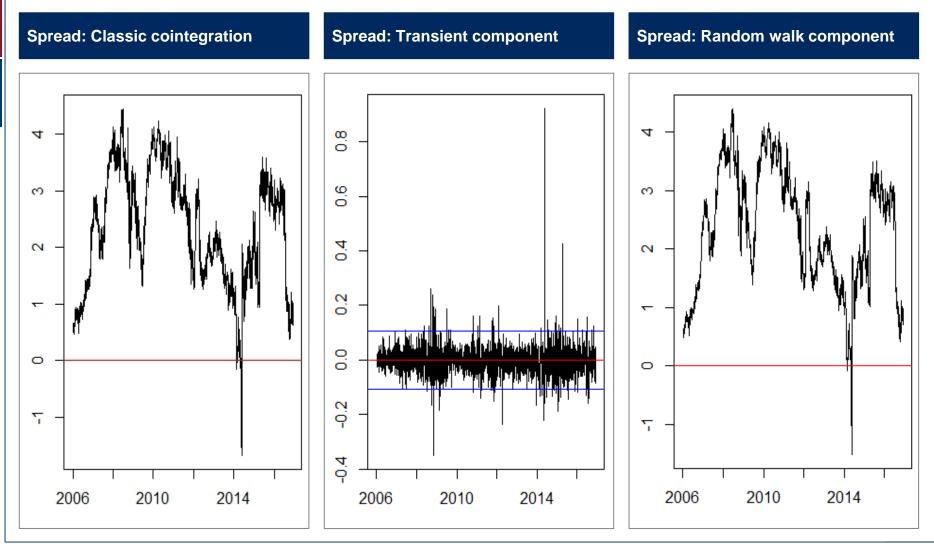
	Classic cointegration ²	Partial cointegration
Residual series	Consists of a stationary mean- reverting component	Consists of a sum of a permanent and a stationary mean-reverting component (partially autoregressive (PAR) ³ process)
Shocks	Are required to be transient	Are allowed to be transient and permanent
Visual- ization		When have a weather when have a

How does it work? – A primer on the methodology

The partial cointegration framework ⁴	Notation / Assumptions
• <i>Y_t</i> and <i>X_{j,t}</i> are partially cointegrated, if a parameter vector $\iota = \{\beta, \rho, \sigma_M, \sigma_R\}$ exists so that: $Y_t = \beta_1 X_{1,t} + \beta_2 X_{2,t} + \dots + \beta_k X_{k,t} + W_t$ $W_t = M_t + R_t$ $M_t = \rho M_{t-1} + \varepsilon_{M,t}; \varepsilon_{M,t} \sim \mathcal{N} \left(0, \sigma_M^2\right)$ $R_t = R_{t-1} + \varepsilon_{R,t}; \varepsilon_{R,t} \sim \mathcal{N} \left(0, \sigma_R^2\right)$ $\beta_i \in \mathbb{R}; \rho \in (-1, 1); \sigma_M^2, \sigma_R^2 \in \mathbb{R}_0^+$	• Notation • Notation - Target time series: Y_t - Factor time series j: $X_{j,t}, j = 1,, k$ - Coefficient of factor time series j: β_j - PAR process: W_t - Mean-reverting component: M_t - Permanent component: R_t - Error terms M_t , R_t : $\varepsilon_{M,t}$, $\varepsilon_{R,t}$ - Vector of factor coefficients: β
 Proportion of variance attributable to mean reversion (PVMR): 	- Coefficient of mean-reversion: ρ - PVMR: R_{MR}^2

 $R_{MR}^{2} = \frac{VAR\left[(1-B)M_{t}\right]}{VAR\left[(1-B)W_{t}\right]}$ $= \frac{2\sigma_{M}^{2}}{2\sigma_{M}^{2} + (1+\rho)\sigma_{R}^{2}}$

• Assumptions: $\varepsilon_{M,t}$ and $\varepsilon_{R,t}$ are mutually independent normally distributed white noise processes with mean zero and variances σ_M^2 and σ_R^2



How to use partialCI? – An overview of the key functions

Function	Description	Code
fit.pci	Fits a partial cointegration model to a given collection of time series	<pre>fit.pci(Y, X, pci_opt_method = c("jp", "twostep"),par_model = c("par", "ar1", "rw"), lambda = 0, robust = FALSE, nu = 5, include_alpha=FALSE)</pre>
test.pci	Tests the goodness of fit of a PCI model	<pre>test.pci(Y, X, alpha = 0.05, null_hyp = c("rw", "ar1"),robust = FALSE, pci_opt_method = c("jp", "twostep"))</pre>
statehistory.pci	Estimates and extracts the sequence of hidden states	statehistory.pci(A, data = A\$data, basis = A\$basis)
hedge.pci	Finds <i>k</i> factors from a predefined set of factors which yield the best fit to the target time series	<pre>hedge.pci(Y, X,use.multicore = TRUE, minimum.stepsize = 0, exclude.cols = c(), search_type = c("lasso", "full", "limited"),pci_opt_method=c("jp","twostep"))</pre>

Where is it helpful (1/2)? – An example in pairs trading: RDS-A and RDS-B $(2006-01-01 - 2016-01-12, daily prices)^5$

⁵ Data and R-code: <u>https://github.com/jonasrende/Rfinance2017</u>

Where is it helpful (2/2)? – The test indicates that RDS-A and RDS-B are indeed partially cointegrated

Fit a PCI model	Test for PCI		
<pre>PCI_RDSA_RDSB<-fit.pci(RDSA, RDSB, pci_opt_method = c("jp"), par_model =c("par"), lambda = 0, robust = FALSE, nu = 5, include_alpha = FALSE))</pre>	<pre>test.pci(RDSA, RDSB, alpha = 0.05, null_hyp = c("rw", "ar1"), robust = FALSE, pci_opt_method = c("jp"))</pre>		
<pre>Fitted values for PCI model Y[t] = X[t] %*% beta + M[t] + R[t] M[t] = rho * M[t-1] + eps_M [t],</pre>	Likelihood ratio test of [Random Walk or CI(1)] vs Almost PCI(1) (joint penalty method)		
Estimate Std. Err beta_Close 0.9264 0.0038 rho 0.3959 0.0965 sigma_M 0.1063 0.0082 sigma_R 0.1174 0.0074	data: RDSA Hypothesis Statistic p-value Random Walk -55.09 0.010 AR(1) -52.88 0.010		
$-LL = -1165.16, R^{2}[MR] = 0.540$			

Interested? – Further references

Paper / Package	Title	URL	QR code
Full paper	partialCI: An R package for the analysis of partially cointegrated time series	http://hdl.handle.net/10 419/150014	
Slides	partialCI: An R package for the analysis of partially cointegrated time series	https://www.statistik.rw. fau.de/files/2017/05/v01 -2017.pdf	
R package (CRAN)	partialCI: Partial Cointegration	https://cran.r- project.org/web/packag es/partialCl/index.html	
Initial show case for partial cointegration	Pairs trading with partial cointegration	http://hdl.handle.net/10 419/140632	