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Introduction



Aims of talk

• Give an overview on the most popular discrete time models for stock
returns.
• Show that these models are able to capture most of the characteristics

financial data exhibit.
• Show how to calibrate the models from historical data.
• Show how to price risk in this model.
• Show one possibility to price options within this framework.
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The structure of the talk

• First, we introduce some basic definitions. The content is based on the
textbooks of [Brockwell and Davis, 1991] chapter 1, [White, 2001] chapter
3.
• Second, stochastic volatility models are introduced and their properties

are investigated. This section is heavily based on [McNeil et al., 2005]
chapter 4 and [Andersen et al., 2009].
• In the third part application to problems in quantitative finance are given.

This part also relies on [McNeil et al., 2005] chapter 4 as well as a recent
review paper of [Christoffersen et al., 2009] and references therein.
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Stochastic processes



Basic definitions

• In the following we consider a filtered probability space (Ω,A,Ft ,P).
• The index set T = Z or T = N will be interpreted as time points.

Definition

1. A stochastic process is a family of random variables {Xt , t ∈ T} defined
on (Ω,A,P). We write X := (Xt)t∈T for any stochastic process in discrete
time.

2. The function (X·(ω), ω ∈ Ω) on T are called realizations or sample paths
of X.
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Examples I

White Noise: Let εt
iid∼ N(0, 1), the process Xt = εt is called (strictly) white

noise process SWN(0, 1) for short.
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Examples II

Random Walk: Let T = N and εi be SWN(0, 1). The process

Xt =
t∑

i=1

εi,

is called a random walk.
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Examples III

Autoregressive moving average process (ARMA): Let T = Z and εi be
SWN(0, 1).

Xt = µ +

p∑
i=1

αiXt−i +

q∑
j=1

θjεt−j + εt ,

is called ARMA(p,q) process.
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Basic properties

Definition (The common distribution of a stochastic process)

Let T = {t = (t1, ..., tn)
′ ∈ T n : t1 < t2 < ... < tn, n = 1, 2, ...}. Then the

finite dimensional distribution functions of X are defined by:

Ft(x) = P(Xt1 ≤ x1, ...,Xtn ≤ xn), x = (x1, ..., xn)
′ ∈ Rn.

Definition (The autocovariance function)

Let Var(Xt) <∞ for all t ∈ Z, then the autocovariance function is defined for
all s, t ∈ Z by:

γ(s, t) = Cov(Xs,Xt) = E [(Xs − E [Xs])(Xt − E [Xt])].
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Stationary I

• With the assumption of stationary we reduce the number parameters that
have to be estimated in order to describe the process completely.

Definition

A stochastic process X is called
1. integrable, if E [|Xt|] <∞ for all t ∈ T ,
2. strictly stationary or just stationary, if the joint distribution of (Xt1, ...,Xtk )

′

and (Xt1+h, ...,Xtk+h)
′
are the same for all t1, ..., tk , h ∈ Z.

3. weakly stationary if for all r , s, t ∈ T :
3.1 E [|Xt |2] <∞,
3.2 E [Xt ] = µ,
3.3 γ(s, t) = γ(s + r , t + r ).
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Stationary II

• Note, if X is weakly stationary we have γ(s, t) = γ(s − t , 0) = γ(h), with
h = s − t ≥ 0.
• Also, we write ρ(h) = γ(h)

γ(0) for the autocorrelation function (ACF).
• A weakly stationary gaussian process is also strictly stationary.
• A strictly stationary process is also weakly stationary provided

Var(Xt) <∞.
• In general the converse is false.
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Example I: The white noise process

• Let X be a SWN(0,1). This process is:
1. integrable, since

E [|Xt |] =
√

2/π <∞,
2. strictly stationary, as

F(Xt1 ,...,Xtk )(x) =
k∏

i=1

FXti
(xi) =

k∏
i=1

FXti+h(xi),

3. weakly stationary, as
3.1 E [|Xt |2] = 1 <∞,
3.2 E [Xt ] = 0 for all t

3.3 γ(h) =

{
1 for h = 0
0 for h 6= 0
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Example II: The AR(1) process I

• Let εt be SWN(0, 1). Consider the AR(1) process Xt = αXt−1 + εt . We
may show the following: If |α| < 1, then the AR(1) process is integrable,
strictly stationary and weakly stationary.
• First, observe that

Xt = α(αXt−2 + εt−1) + εt

= αk+1Xt−k−1 +
k∑

i=0

αiεt−i.

For k →∞ this yields to

Xt =
∞∑

i=0

αiεt−i.
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Example II: The AR(1) process I

• Thus we have:
1. E [Xt ] = 0
2. Var (Xt) =

∑∞
i=0 α

2iVar (εt−i) = 1/(1− α2)

3. and for h > 0

γ(h) = E

 ∞∑
i=0

αiεt−h−i

∞∑
j=0

αjεt−j


=

∞∑
i=0

∞∑
j=0

αiαjE [εt−h−iεt−j ] = αh
∞∑

i=0

α2i

= αh1/(1− α2).

4. Especially we have ρ(h) = αh. Thus, the ACF is decaying exponentially fast for
|α| < 1.

• Since the AR(1) process is a weakly stationary gaussian process, it is
also strictly stationary.
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Ergodicity I

• Ergodicity of stochastic process is a crucial assumption when expected
values or parameters are estimated.
• Under stationarity and ergodicity conditions a generalization of the strong

law of large numbers is possible.
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Ergodicity II

Definition (Measure preserving and ergodicity)

1. Let (Ω,A,P) be a probability space. The transformation T : Ω→ Ω is
measure preserving if it is measurable and if P(T−1A) = P(A) for all
events A ∈ A.

2. A stationary sequence X is ergodic if

lim
n→∞

1
n

n∑
t=1

P(A ∩ T tB) = P(A)P(B),

for all events A,B ∈ A and for all measure preserving transformations T ,
s.t. X1(ω) = X1(ω),X2(ω) = X1(Tω), ...,Xt(ω) = X1(T t−1ω).

• The random variables induced by measure preserving mappings are
identically distributed, that is:

P(X1 ≤ x) = P({ω : X1(ω) ≤ x}) = P({ω : X1(Tω) ≤ x}) = P(X2 ≤ x).
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The ergodic Theorem: A Law of large
numbers

Theorem (Ergodic Theorem)

Let X be a stationary and ergodic sequence with E |Xt| <∞. Then

1
n

n∑
t=1

Xt
a.s.→ E [Xt].

1. The classical (strong) law of large numbers is a special case: A sequence
of iid. random variables X1, ...Xn is stationary and ergodic.

2. Note, that Yt = g(Xt) for some measurable map g is also stationary and
ergodic. Provided that X is stationary and ergodic.

3. Thus, under ergodicity of the time series we can consistently estimate the
moments like the expected value, variances or autocovariance based on
realizations Xt t = 0, ...T of the process X.
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The mixing property I

Definition

• The process X is said to be α or strong mixing if

αt = sup{|P(A ∩ B)− P(A)P(B)| : A ∈ F0
−∞,B ∈ F∞t }

t→∞→ 0,

where Fb
a = σ(Xt , a ≤ t ≤ b).

• The process is X is said to be β-mixing or absolutely regular if

βt = E [ sup
B∈F∞t

|P(B|F0
−∞)− P(B)|] t→∞→ 0 (1)
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The mixing property II

1. If X is absolutely regular it is also strong mixing.
2. If X is stationary and strong mixing, than the process is ergodic.
3. The mixing coefficient shows how fast the dependence decays over time.
4. For instance: if αt decays exponentially fast, i.e. αt = O(ρt), with
ρ ∈ (0, 1), we say that X is strongly mixing with geometrical decay.

5. The rate of αt is closely related to the decay in the ACF.
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Some examples

• Let Xt be SWN(0,1). This process is:
1. ergodic, since ...,Xt−2,Xt−1,Xt , ... are independent and identically distributed.
2. absolut regular since

βk = E [sup |P(B|F0)− P(B)|] = 0,

because of the independence of all Xk from X0 for k ≥ 1.
3. Consequently the iid. sequence is also strong mixing.
• Consider the stationary AR(1) process Xt = αXt−1 + εt , with |α| < 1 and
εt a white noise process.
1. It can be shown, (see for instance [Mokkadem, 1988]) that the AR(1) process is

absolutely regular with geometrical decay, whenever |α| < 1
2. Thus, the AR(1) process is also ergodic.
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Volatility models



Asset returns and Volatility models I

• We observe the price St of an asset at time t as an realization of a
stochastic process.
• Typically St is neither stationary nor ergodic, so we consider the

transformation:
Xt = log(St/St−1).

• The process Xt is said to be the process of the (log-)returns, which can be
tested for stationarity.
• Compare both processes St and Xt :
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Asset returns and Volatility models II

(a) Prices of DAX30 (b) Stock returns of DAX30
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Stylized Facts of financial returns

We would like to find functions(s) that model the following stylized facts (see
[Rama, 2001])
• Absence of autocorrelations
• Slow decay of autocorrelation in absolute and squared returns
• Volatility clustering
• Heavy tails
• Conditional heavy tails
• Leverage Effect
• Gain / Loss asymmetry
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Volatility models

• We consider the following volatility model in discrete time:

Xt = µt + σtεt , (2)

where
1. µt := µ(Xt−1,Xt−2, ..., εt−1, εt−2, ...) is a Ft−1 measurable function of past

observations Xt−i and ”shocks” εt−i modeling the conditional mean of Xt ,
2. σt := σ(Xt−1,Xt−2, ..., εt−1, εt−2, ...) is a Ft−1 measurable function modeling the

conditional deviation of Xt often referred to as ”volatility” and
3. εt is SWN(0,1).

• For instance take µt = α1Xt−1, σt = σ for all t ∈ Z, we have the AR(1)
process with constant volatility σ, again.
• For simplicity we set µt ≡ 0 in equation (2):

Xt = σtεt . (3)

• In the following we investigate the structure of processes of the form (3)
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LGARCH

Definition (Linear GARCH(1,1))

A stochastic process (Xt)t∈Z is called a LGARCH(1,1) process, if:

Xt = σtεt , (4)
σ2

t = α0 + α1X 2
t−1 + β1σ

2
t−1, t ∈ Z (5)

with
θ = (α0, α1, β1) ∈ Θ = R+ ×R+

0 ×R+
0 .

εt is SWN(0, 1).

• The linear GARCH model was introduced by [Bollerslev, 1986].
• In most application a simple LGARCH(1,1) model already gives a

reasonable fit to financial data, see [Hansen and Lunde, 2005].
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Basic properties of LGARCH(1,1) I

Theorem (Weak stationarity)

The LGARCH(1,1) process in (4) is a weakly stationary white noise process
if and only if α1 + β1 < 1 with E [Xt] = 0 and Var(Xt) = α0/(1− α1 − β1).

• When α1 + β1 = 1 the LGARCH(1,1) process is not weakly stationary as
Var(Xt) =∞.
• Nevertheless, it can be shown that if α1 + β1 = 1 the LGARCH(1,1) is

strictly stationary.
• It can be shown that even if α1 + β1 = 1 the LGARCH(1,1) is absolutely

regular.

Theorem (Strict Stationarity and absolut regularity)

The LGARCH(1,1) process in (4) is strictly stationary and absolutely regular
with exponential decay if α1 + β1 ≤ 1. Hence, the process is also ergodic.
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Basic properties of LGARCH(1,1) II

• The proof for strict stationarity of the process is given in [Duan, 1997], the
proof for absolute regularity of the process is given in
[Francq and Zakoïan, 2006].
• The next pictures shows the autocorrelation of a LGARCH model with
α0 = 0.0001, α1 = 0.05, β1 = 0.85 and εt

iid∼ N(0, 1).

(c) ACF of a LGARCH(1,1) process (d) ACF of a squared LGARCH(1,1) process
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The LGARCH(1,1) model and stylized
facts

• It can be shown that the following stylized facts are captured by a simple
LGARCH(1,1) process with gaussian innovations.
1. Absence of autocorrelation, because a LGARCH(1,1) process is a martingale

difference process, as E [Xt |Ft−1] = 0 for all t ∈ Z.
2. Volatility clustering because of autoregressive structure in X 2

t rather Xt .
3. Heavy tails, even if the conditional distribution is gaussian. This can be seen

after some calculations:

E [X 4
t ]/σ4 = 3 + 6 · α2

1

1− β2
1 − 2α1β1 − 3α2

1
> 3,

whenever 1− β2
1 − 2α1β1 − 3α2

1 > 0 (which in application is often true, for
instance α1 = 0.05 and β1 = 0.85, then 1− β2

1 − 2α1β1 − 3α2
1 = 0.185.)

• The other stylized facts like leverage effects can be captured by various
generalizations of the LGARCH model.
• For an overview we refer to part 1 of [Andersen et al., 2009].
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Maximum-Likelihood estimation

• Suppose X has a density function fX (x ;θ) that depends on an unknown
parameter(vector) θ, we wish to estimate.
• Based on an iid. sample x1, ..., xn from X the Maximum-Likelihood

estimator (MLE) for θ is given by

θ̂ML = arg max
θ∈Θ

L(θ; x1, ..., xn) =
n∏

i=1

fX (xi,θ).

• It is convenient to maximize LL = ln L(θ) instead of L(θ).
• Under suitable conditions, see for instance [Ferguson, 1996] chapter 18,

we have: √
n(θ̂ML − θ0)

d→ N(0,Σ),

where Σ = −E [∇2
θ ln L(θ)]−1.
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LGARCH-Estimation I

• As the LGARCH(1,1) process is defined recursively the iid. assumption is
violated.
• Based on the observed sample x1, ..., xn we can construct the joint density

from:

fX1,...,Xn(x1, ..., xn) = fX1(x1)
n∏

t=2

fXt |Xt−1,...,X1(xt|xt−1, ..., x1).

• Thus LL(θ) = ln fX1(x1) +
∑n

t=2 ln fXt |Xt−1,...,X1(xt|xt−1, ..., x1).
• Consider the LGARCH(1,1) from equation 4, where εt ∼ N(0, 1). Given

starting values (x1, σ1) MLE for θ = (α0, α1, β1)
′
is given after some

calculations by:

LL(θ) = −c −
n∑

t=1

logσt(θ)− 1/2
n∑

t=1

x2
t /σ

2
t (θ).
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LGARCH-Estimation II

• The maximum θ̂ML of LL(θ) is calculated using numerical methods.
• Under suitable conditions like ergodicity and strict stationarity the MLE is

consistent and asymptotically normally distributed, even if the distribution
of the residuals is unknown, see [Francq and Zakoïan, 2004],
[Berkes et al., 2003] or [Mikosch and Straumann, 2006] resp.
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Fitting the model to the DAX30 I

(e) ACF of DAX30 returns (f) ACF of a squared DAX30 returns
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Fitting the model to the DAX30 II

• From a first glance we can assume that the underlying process is a
LGARCH(1,1) process.
• The estimated parameters of the LGARCH(1,1) process are:

α̂0 α̂1 β̂1 LL
1.39e-06 1.09e-01 8.89e-01 5733.608

• The parameters imply that the 4th unconditional moment does not exist.
• A look at the residuals (and any test) rejects the hypothesis that the

residuals are normal distributed but they are uncorrelated.
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Fitting the model to the DAX30 III

(g) Density estimates of the returns (h) ACF of a squared estimated returns
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Applications in finance



The Value-at-risk I

• We want measure the risk of an investment, say an asset like an index
fonds consisting of the DAX30.
• A prominent example of a risk measure is the so-called Value-at-risk

(VaR).

Definition (Value-at-risk)

Given some confidence level α ∈ (0, 1). The VaR of a portfolio at given level
α is the smallest number l s.t. the probability that the loss L exceeds l is not
larger than (1− α), i.e.

VaRα = inf{l ∈ R : FL(l) ≥ α},
where FL is the loss distribution function.

1. The VaRα is the quantile of the loss distribution.
2. The VaRα is maximum loss that will not be exceeded with a given

probability α.
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The Value-at-risk II

3. Suppose, the L ∼ N(0, σ2), then VaRα = σΦ−1(α) with Φ = N(0, 1).
4. Usually the loss distribution will be calculated for a given time horizon δ,

for instance 1 day or 1 week ahead.
5. For the LGARCH(1,1) process in equation 4 the one-day-ahead forecast a

time point t is then given by

VaRt
α = σ̂t+1Φ−1(α),

where σt+1 is one-day forecast of the conditional volatility
σ2

t+1 = α̂0 + α̂1x2
t + β̂1σ

2
t .

6. As a comparison we use the α quantile and a non-parametric estimate
that uses the past 250 observations to estimate the volatility at time t
(’running variance’).

7. We set α = 0.01. In 1.91% the returns are lower than the predicted VaR.
For the running variance this happens in 2.74% of the cases.
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The Value-at-risk for the DAX30
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Option Pricing

• A derivative security is a financial contract whose value is derived from an
underlying.
• Broadly traded derivative securities are call or put options or futures.
• We focus on European call options.

Definition (Pay off function of a call option)

Denote the value of a call option at maturity T by CT (ST ,T ,K ), XT the value
of the underlying asset at time T and K the strike price. Then the pay-off
function is given by:

CT (ST ,T ,K ) := max(0,ST − K ).

The current value of an option with maturity T is given by:

C0(S0,T ,K ) := e−rT EQ[max(0,XT − K )],

with r the interest rate and Q the risk neutral measure.
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Deriving the risk neutral measure in
LGARCH(1,1) models

Theorem

Let the log returns Xt follow a LGARCH(1,1) process under the
physical/observed measure P.
Under the risk neutral measure Q the log returns have the following
distribution

log(St/St−1) = r − h2
t

2
+ ε∗t ,

where r is the risk free return, ε∗t = Xt + σ2
t /2− r is a risk neutral LGARCH

process with:
ε∗t |Ft−1 ∼ N(0, h2

t )

with risk-neutral variance dynamic:

h2
t = α0 + α1(ε∗t ) + βh2

t−1.

Only for conditionally normal returns we have h2
t = σ2

t
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Simulating the Option price I

1. Q can not be obtained explicitly, thus the expected value in C0 has to
estimated via Monte-Carlo simulation

2. We simulate the T-day ahead Stock price under the risk neutral LGARCH
process.

2.1 Input: Stock price S0, risk free interest r , strike price K , length of forecast
period T , number of simulations m, initial conditional variance h2

0, last observed
risk free return ε∗0.

2.2 Simulate the paths of the stock price

3. Calculate the discounted mean of max(ST − K , 0).
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Simulating the Option price II
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Option price for Dax30

We want to calculate the option price for an Call option on the Dax30 that
expires 52 days from the 09.08.2011 (20.10.2011). Closing stock price is
5917. As the risk free return we set r = 1.2% the one year EURIBOR at that
time. As the observed price we use CBid(XT ,T ,K )− CAsk(XT ,T ,K ))/2. In
order to simulate 100.000 paths we need 100 seconds.

Strike Price Observed Price Simulated Price Black-Scholes
5450 6.415 7.178 4.173
5900 3.085 4.525 0.270
6050 2.205 3.776 0
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