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Motivation

Analysis of financial time series

In parametric time series analysis there is the implicit assumption that there are
no outliers.

An outlier is an observation that deviates much from other observations. It is
likely that it was ’generated’ by a different process.

There are different reasons for the identification of outliers.

The outlier is to be rejected.

There is a special interest (detecting alternative or rare phenomena) in that
observation.

Outliers can be used as diagnostic indicators.
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Motivation

Figure: Log returns of VW Stock
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GARCH processes

GARCH processes
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GARCH processes

GARCH processes

A stochastic process Xt is a GARCH(p,q) process, cf. Bollerslev (1986), if:

Xt |Ft−1 = σtνt ,

σ2
t = (σt(γ))2 = α0 +

p∑

i=1

αiX
2
t−i +

q∑

i=1

βiσ
2
t−i , t ∈ Z

with γ = (α0, α1, · · · , αp, β1, · · · , βq), α0 > 0, αi ≥ 0, i = 1, . . . , p and βi ≥
0, i = 1, . . . , q.
Furthermore Ft denotes the information set of the process up to time t.

The innovations νt
iid∼ G , where G is some distribution function with EG (νt) = 0

and EG (ν2
t ) = 1.

The log likelihood (for normal innovations) is given by (apart from constants):

LogL(γ) = `(γ) =
n∑

i=1

1

2
log(σt) +

x2
t

σ2
t
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Detecting Outlying Observations

Detecting Outlying Observations
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Detecting Outlying Observations

There are different strategies to detect outlying observations, including:

robust estimators,

likelihood ratio test and

tests based on the cumulative sum of observed residuals,
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Detecting Outlying Observations

Outlier in GARCH Processes

Two types of outlier exist, additive and innovational outliers, cf. Fox (1972).
Additive outliers only influence one period, while innovational outliers influence
more than one period. Following Doornik and Ooms (2005) they can be modelled
the following way:

Additive outlier:

Yt = Xt + γ1t(τ)

Xt |Ft−1 ∼ N(0, σ2
t−1),

σ2
t = α0 +

p∑

i=1

αiX
2
t−i +

q∑

i=1

βiσ
2
t−i ,

Innovational outlier:

Yt = Xt + γ1t(τ)

Xt |Ft−1 ∼ N(0, σ2
t−1),

σ2
t = α0 +

p∑

i=1

αiY
2
t−i +

q∑

i=1

βiσ
2
t−i ,
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Detecting Outlying Observations

Likeliood ratio test

Let y1, · · · , yn be the realisations of the observed process and let x1, · · · , xn be the
realisations of the unobservable process

yt = κ11t(τ) + xt

σ2
t = α0 +

p∑

i=1

αix
2
t−i +

q∑

i=1

βiσ
2
t−i +

p∑

i=1

κ1+i1t(τ − i),

λτ = −2(log L(γ̂0)− log L(γ̂1))
a∼ χ2(p + 1),

where, γ̂0 = (α̂0, α̂1, . . . , α̂p, β̂1, . . . , β̂q) is the restricted ML-estimate and

γ̂1 = (α̂0, α̂1, . . . , α̂p, β̂1, . . . , β̂q, κ̂1, . . . , κ̂p+1) is the unrestricted ML-estimate.
Since the time of an outlier is unknown, the test statistic is computed for every
τ = 1, . . . ,T

Mn = max
t≤n

λt .
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Detecting Outlying Observations

Testing for structural breaks

Figure: Testing for structural breaks Inclan and Tiao (1994)
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Detecting Outlying Observations

A Test based on the cumulative Sum

Theorem (Theorem 11 from Merlevède et al. (2006))

Let (Xt)t∈Z be a stationary sequence with E (X0) = 0 and E (X0)2 <∞ Assume
that the following holds:

∞∑

i=1

||E (Sn|F0)||2
n

3
2

<∞,

where Sn =
∑n

i=1 Xi and ||X ||p = (E (|X |p))
1
p . Then,

{
max1≤k≤n

S2
k

n
: n ≥ 1

}

is uniformly integrable and

Wn
D→ √ηW ,

where Wn(r) = 1
σ
√
n

∑bnrc
i=1 Xi and W a Brownian Motion, η is a non-negative

random variable with finite mean E [η] = σ2 and independent of {W (r); r ≥ 0}.
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Detecting Outlying Observations

Theorem

Let (Xt)t∈Z be a stationary process that fulfils the assumptions of the previous
theorem and let ξt = X 2

t − Var(Xt), then

1

σ
√

n

brTc∑

i=1

ξi
D→W (r),

where σ = E
(
(
∑n

i=1 X 2
i /n)2

)
.

It holds furthermore that:
max

1≤i≤n
ξi − ξi−1 → G ,

where G is a Gumbel distribution with suitable normalizing constants µg (n) and
σg (n).

Proof (Theorem 2) From Theorem 1 we have that

1

σ
√

n

brnc∑

i=1

ξi
D→W (r).
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Detecting Outlying Observations

By definition the following holds for a Brownian motion:

1 W(0)=0.

2 Let t1, t2, t3, t4 ∈ [0, 1] with t1 < t2, t3 < t4. Then
W (t2)−W (t1) and W (t4)−W (t3) are stochastically independent.

3 ∀ t1, t2 ∈ [0, 1] with t1 ≤ t2 it holds: W (t2)−W (t1) N(0, t2 − t1).

From this follows that ξt − ξt−1 is i.i.d. normal with µ = 0 and σ2 = 1
n

Furthermore, the maximum of i.i.d. normal distributed random variables lies in the
domain of attraction of a Gumbel distribution. The location parameter µg (n) and
the scale parameter σg (n) are given in Takahashi (1987)

µg (n) =

(
(2 log(n))

1
2 −

(
log(log(n) + log(4π)

)
/
(
2/(2 log(n))

1
2

))√1

n
(1)

σg (n) =

(
2 log(n)

)− 1
2
√

1

n
(2)
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Detecting Outlying Observations

Simulation study
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Simulation study

The test based on the increments of the Brownian motion and the test based
on the likelihood ratio test are compared.

500 repetitions

GARCH(1,1) with α0 = 0.001, α1 = 0.1, β1 = 0.8, n = 500 and = 1000

Relative and fixed outliers at time τ = n/2:

additive and innovational outliers of size 3σt and 5σt .

σ̂ =
1

n

n∑

i=1

(
x2
i − σ̂2

)2
+

2

n

m∑

j=1

w(l ,m)
n∑

i=j+1

(
x2
i − σ̂2

) (
x2
i−j − σ̂2

)
,

where w(l ,m) is a lag window, i.e. the Bartlett window defined by

w(j ,m) = 1− j

m + 1
.

Observations LR CUSUM − type
0.95 0.99 0.95 0.99

n=500 0.086 0.016 0.066 0.014
n=1000 0.068 0.012 0.058 0.012
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Obs size LR CUSUM
0.05 0.01 0.05 0.01

R
el

ad
d 500 3 0.4 (0.332) 0.212 (0.188) 0.298 (0.27) 0.222 (0.21)

5 0.968 (0.95) 0.944 (0.93) 0.92 (0.92) 0.864 (0.864)
1000 3 0.442 (0.342) 0.184 (0.172) 0.346 (0.258) 0.258 (0.2)

5 0.978 (0.966) 0.954 (0.946) 0.96 (0.952) 0.928 (0.922)

F
ix
ed

ad
d 500 3 0.454 (0.402) 0.24 (0.22) 0.322 (0.278) 0.238 (0.214)

5 0.956 (0.948) 0.908 (0.902) 0.944 (0.944) 0.878 (0.878)
1000 3 0.472 (0.388) 0.226 (0.21) 0.318 (0.252) 0.234 (0.19)

5 0.974 (0.962) 0.928 (0.92) 0.97 (0.964) 0.962 (0.956)

R
el

in
n
o
v 500 3 0.34 (0.258) 0.144 (0.128) 0.198 (0.17) 0.124 (0.116)

5 0.996 (0.966) 0.976 (0.948) 0.756 (0.754) 0.612 (0.612)
1000 3 0.388 (0.308) 0.208 (0.186) 0.252 (0.182) 0.216 (0.162)

5 0.996 (0.978) 0.984 (0.97) 0.874 (0.858) 0.808 (0.794)

F
ix
ed

in
n
o
v 500 3 0.372 (0.322) 0.202 (0.184) 0.236 (0.198) 0.156 (0.134)

5 0.964 (0.942) 0.904 (0.894) 0.754 (0.752) 0.634 (0.634)
1000 3 0.428 (0.344) 0.212 (0.19) 0.266 (0.208) 0.196 (0.158)

5 0.98 (0.97) 0.94 (0.934) 0.91 (0.898) 0.832 (0.824)

Table: Power of the LR-test and the CUSUM-test

Summary and Outlook

Summary and Outlook

The proposed method to detect outliers has a similar power as the likelihood
ratio test. A great advantage is the low computational cost.

The high runtime for the likelihood ratio test is due to the fact that for every
observation the maximum likelihood has to be computed. In order to reduce
the observations that are possible candidates for outliers, a model free
variance can be computed Gelper et al. (2009)

The proposed method to detect outliers can be extended to multivariate
processes, especially:

Vector autoregressive moving-average (VARMA) processes

Multivariate GARCH processes (CCC-GARCH)
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