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Abstract

Li, Fang & Tian (1994) assert that special quasi-linear means should be pre-

ferred to the simple arithmetic mean for robustness properties. The strategy

that is used to show robustness is completely detached from the concepts well-

known from the theory of robust statistics. Robustness of estimators can be

verified with tools from robust statistics, e.g. the influence function or the

breakdown point. On the other hand it seems that robust statistics is not

interested in quasi-linear means. Therefore, we compute influence functions

and breakdown points for quasi-linear means and show that these means are

not robust in the sense of robust statistics if the generator is unbounded. As

special cases we consider the Laspeyres, the Paasche and the Fisher indices.
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1 Introduction

A lot of attention in robust statistics in devoted to the modification of the arithmetic

mean. Important price indices, i.e. Laspeyres, Paasche and Fisher are quasi-linear

means. Only the article published by Li, Fang & Tian (1994) discusses robustness

properties of the QLM, but their notion of robustness is detached form well-known

concepts used in robust statistics, such as the influence function or the breakdown

point.

For particular measures, such as the kurtosis, the influence function is given in

Ruppert (1987) or Groeneveld (1991). The influence function of three particular

broad classes of measures is discussed by Klein (1998). Recently, Groeneveld (2011)

investigates the influence function of the coefficient of variation. Essama-Nssah

und Lambert (2011) discuss the influence function of particular measures that are

important in the field of income distribution. All these works exclude the QLM.

A quasi-linear mean is defined as follows (see for example Jarczyk (2007, p. 3)):

Definition 1 Let X1, . . . , Xn be random variables, g1, . . . , gn ≥ 0 and u : [a, b]→ R
be a strictly monotone and continuous function with inverse u−1. Then Mu

Mu = u−1

(
n∑

i=1

u(Xi)
gi∑n
j=1 gj

)
, gi ≥ 0

is called a quasi-linear mean (QLM). Furthermore, u is the generator of the quasi-

linear mean.

The special case gi = 1 for i = 1, 2, . . . , n is called quasi-arithmetic mean (QAM)

(see f.e. Aczél (1966, p. 276), Bullen et al. (1988, p. 215)).

In a first, step Li, Fang & Tian (1994) discuss the estimation of a location

parameter from observations that are generated form the following model:

xi = µ+ νi, i = 1, 2, . . . , n

where ν1, . . . , νn are stochastically independent, identically distributed random vari-

ables with mean 0.
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Let ρ(x, µ) ≥ 0. In order to obtain the estimated location parameter µ̂ we have to

minimize
n∑

i=1

ρ(xi, µ),

with regard to µ.

The estimate µ̂ corresponds to a QLM when the function ρ is set to

ρ(xi, µ) = (u(xi)− u(µ))2
gi∑n
j=1 gj

, i = 1, 2, . . . , n.

Li, Fang & Tian (1994) present known results regarding QLM and their corre-

sponding objective function. These results are summarized in Table 1.

QLM objective function ρ

Arithmetic mean 1/n
∑n

i=1 xi
∑n

i=1(xi − µ)2

Median med(x1, . . . , xn)
∑n

i=1 |xi − µ|

Harmonic mean n/
∑n

i=1 1/xi
∑n

i=1 xi(µ/xi − 1)2

Geometric mean (
∏n

i=1 xi)
1/n ∑n

i=1(ln(xi/µ))2

Gen. harm. mean (type 1)
∑n

i=1 x
p−1
i /

∑n
i=1 x

p−2
i

∑n
i=1 x

p
i (µ/xi − 1)2

Gen. harm.mean (type 2) (n/
∑n

i=1 x
q
i )
−1/q ∑n

i=1(x
q
i − µq)2

Gen. geom. mean
(∏n

i=1 x
x2r
i

i

)1/∑n
i=1 x

2r
i ∑n

i=1 (xri ln(xi/µ))2

Table 1: Quasi-linear mean (QLM) and corresponding objective function

The generalized harmonic mean of type 2 is the unweighted power mean(
1

n

n∑
i=1

xqi

)1/q

.

Gini (1938) discusses a weighted version of the power mean by setting the weights:

gi = xri , i = 1, 2, . . . , n

Li, Fang & Tian (1994) argue that the generalized means they propose are more

robust than the arithmetic mean. In their notion, a mean is more robust if a test for
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location based on this particular mean holds its significance level if one observations

is an outlier. This statement is based on a simulation study.

The robustness considerations of Li, Fang & Tian (1994) are surprising since

robust statistics also uses objective functions of the form
∑n

i=1 ρ(xi, µ) (see Huber

(1981), P. 43). These type of estimators are called M-estimators and the specification

of ρ determine the robustness properties of the estimator.

In this article we want to validate the informal considerations of Li, Fang &

Tian (1994) with tools from robust statistics. In section 2, QLM are introduced

as functionals and we calculate the influence function. The breakdown point is

discussed in the third section. Laspeyres and Paasche indices are weighted arithmetic

resp. harmonic means of relative prices. We present the influence function and the

breakdown points for these indices and the Fisher index, too.

2 Influence function for quasi-linear means

The influence function has two important uses. First, it measures the relative contri-

bution of an observation to the value of an estimate. Second the influence function

is related to the variance of the estimator. This relationship is shown i.e. in Huber

(1981, p.14). If the influence function is bounded, the impact an outlier has on the

estimate and the asymptotic variance are bounded as well.

2.1 General weight functions

Since the influence function is the Gâteaux derivative of the functional, we will first

derive the representation of the QML as a functional.

Let (X, Y ) be a pair of random variables with distribution function F . The

following results is also valid, if Y is a random vector. Furthermore, let u be the

generator of the QML and let h be a measurable non-negative function.

The most general representation of a QML as a statistical functional is given by:

T (F ) = u−1 (E(u(X)g(X, Y ))/E(g(X, Y )))

= u−1
(∫

u(x)
g(x, y)

E(g(X, Y ))
dF (x, y)

)
,
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given that E(u(X)) and E(g(X, Y )) exist. For the remainder of this paper we

assume that both expectations exist. This representation includes all QLM that are

summarized in Table 1. This representation is equivalent to (1) with the weight

function g depending on X as well as other random variables.

The influence function of a statistical functional T (F ) is defined as the Gâteaux

derivative of the functional T in direction of the Dirac measure δx,y, (x, y) ∈ X ,

where X denotes the carrier of the distribution F , see Hampel (1968, 1974).

Definition 2 The influence function T (F ) is given by

IF (x, y;T, F ) = limε→0+

T (Fε(δx,y))− T (F )

ε
,

where Fε(δx,y) = (1− ε)F + εδx,y and x, y ∈ X .

The following theorem states the influence function for a quasi-linear mean.

Theorem 1 Let T be the statistical functional of a QLM. Then the influence func-

tion of T for the special distribution F with u′(T (F )) 6= 0 is given by:

IF (x, y;T, F ) =
u(x)g(x, y)EF (g(X, Y ))− g(x, y)EF (u(X)g(X, Y ))

EF (g(X, Y )2)

1

u′(T (F ))
.

Proof: The functional T evaluated at Fε is:

T (Fε) = u−1
(

(1− ε)EF (u(X)g(X, Y ))

EF (g(X, Y ))
+ ε

u(x)g(x, y)

g(x, y)

)
Differentiating with respect to ε and taking the limit ε→ 0 from above leads to the

postulated result after some algebra. �

Both the generator u and the weight function g determine the robustness prop-

erties of the quasi-linear mean. If both functions are bounded the same holds for

the influence function. The inverse function u−1 does not play any role w.r.t to

robustness properties.

2.1.1 Special case: constant weight

If the weights are constant with P (g(X, Y ) = 1) = 1, the influence function simplifies

to

IF (x;T, F ) =
u(x)− E(u(X))

u′(T (F ))
.

The boundedness of the influence function is determined exclusively by the function

u.
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Example 1

1. Let u(x) = xq for x > 0 and q 6= 0.

(a) For q > 0 obviously u(x) → ∞ for x → ∞ and u(x) → 0 for x → 0, so

the influence function is only bounded from below.

(b) For q < 0 similar results hold, u(x) is only bounded from above.

2. The function u(x) = lnx is unbounded for x ∈ R+.

3. The choice of u(x) = arctan(x) for x ∈ R results in a bounded influence

function. The quasi-arithmetic mean that corresponds to this generator is used

by Premaratne & Bera (2005) to measure skewness.

2.1.2 Special case: weight function g(x)

In the special case of g depending on x only, the influence function simplifies to

IF (x;T, F ) =
u(x)g(x)EF (g(X))− g(x)E(u(X)g(X))

EF (g(X)2)

1

u′(T (F ))
.

The product u(x)g(x) determines if the influence function is bounded or not.

Li, Fang & Tian (1994) discuss the weight function

g(x) = xr, x > 0, r ∈ R.

We combine the two unbound generators from Example 1 with the proposed weight

function.

1. Let u(x)g(x) = xqxr → 0 for x→∞, if r + q < 0. (I.e. q < −r) .

2. Let u(x)g(x) = (ln x)xr → 0 for x→∞, if r < 0.

This indicates that with appropriate weight functions the influence function can at

least be half-bounded.
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3 Breakdown point for the quasi-linear mean

The concept of a breakdown point was introduced by Hampel in his Ph.D. disserta-

tion 1968 (see also Hampel (1971)) and was further developed by Huber (1981) and

Donoho & Huber (1983). Roughly speaking, the breakdown point is the maximal

proportion of ’bad’ observations an estimator can tolerate before the estimate takes

an arbitrary large value. Recently, Davies & Gather (2005) studied formal aspects

of the breakdown point.

Starting point for the finite-sample breakdown point is the realization of a ran-

dom sample

x 0 = (x1, . . . , xn)

and the functional T evaluated at the empirical function associated with x 0. From

the original random sample x 0 m of the components are replaced with arbitrary

values, infinity is also allowed.

Denote the modified random sample with x (m) and by Tn(xm) the value of the

estimator for this sample.

Definition 3 The finite sample breakdown point of the estimator Tn for the sample

x0 is given by

ε∗n(Tn,x
(0)) =

m∗(x(0))

n
,

where m∗(x(0)) denotes the smallest non-negative integer for which the following

holds true

sup
x(m)

||Tn(x(m))|| =∞.

The fraction m∗/n denotes the smallest percentage of observations that can be

replaced with arbitrary values before the estimator breaks down. If for an estimator

the number m∗ is independent of x 0 the breakdown point is defined as follows

ε∗ = limn→∞ ε
∗
n.

This has the advantage that the breakdown point does not depend on the sample

size n.

The breakdown point is not altered if, instead of replacing m values, the sample

is augmented with m arbitrary values.
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Example 2 (Mean) Let X̄n = 1
n

∑n
i=1Xi, the breakdown point of the mean is

ε∗n(X̄n,x
(0)) =

1

n
.

The breakdown point of the mean is independent of the start sample x(0)

limn→∞ ε
∗
n(X̄n,x

(0)) = 0

This definition of the breakdown point is only valid if the range of the estimator is

R. If the range of the estimator is a compact subset of R say [a, b] we discuss the

behaviour of the estimator when one or more observations tend to a (breakdown in

a) or to b (breakdown in b)

The breakdown point of the quasi-linear mean depends on the function u and its

range resp. its domain. As the breakdown point is influenced by the choice of the

weight function we will discuss only the breakdown points of the quasi-arithmetic

mean.

Mu = u−1

(
n∑

i=1

u(Xi)

)
.

We discuss the breakdown point for different choices of u.

1. Let u : R→ R be an absolutely monotonic increasing and surjective function.

In this case Mu has the same breakdown point as the arithmetic mean.

For xj → ±∞ the same holds for u(xj)→ ±∞ for any j ∈ {1, 2, . . . , n}.
This implies

∑n
i=1 u(xi)→ ±∞ and Mu → ±∞ since u−1 : R→ R absolutely

monotonic increasing and surjective. An example for an absolutely monotonic

increasing and surjective generator is

u(x) = sign(x)|x|r, r > 1.

2. Let u : R+ → R be absolutely monotonic increasing and surjective (i.e.

u(0) = −∞ and u(∞) = ∞, u−1(−∞) = 0, u−1(∞) = ∞). Due to sim-

ilar consideration as in case 1 Mu breaks down if at least one observation

xj → +∞. The breakdown point is also 1/n.

Furthermore, since the range of u is bounded we can check if Mu breaks down

at 0. If xj → 0, then u(xj)→ −∞, so
∑n

i=1 u(xi)→ −∞ and Mu → 0.

An example for this function is u(x) = ln x. This generator corresponds to the

geometric mean.
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3. Let u : R+ → R+ absolutely monotonic increasing and surjective (i.e. u(0) = 0

and u(∞) =∞, u−1(0) = 0, u−1(∞) =∞).

As before, the breakdown point is 1/n, since for xj →∞, u(xj)→∞.

The breakdown at 0 occurs only if all n observations are 0, the breakdown

point is 1.

Setting u(x) = xr, r ∈ Q gives an example.

4. Let u : R+ \ {0} → R+ \ {0} absolutely monotonic decreasing and surjective.

The estimator Mu breaks down at 0. If xj → 0, then u(xj) → ∞ and∑n
i=1 xi →∞, so Mu → 0. The breakdown point is 1/n.

The generator of the harmonic mean (u(x) = 1/x is monotone decreasing and

surjective, so it can only break down at 0.

5. Let u : R→ (a, b) absolutely monotonic increasing and surjective with −∞ <

a < b < ∞, limx→−∞ u(x) = a and limx→b u(x) = b. Then a ≤ Mu ≤ b.

Mu = a resp. Mu = b, if xi → −∞ for all i = 1, 2, . . . , n resp. xi →∞ for all

i = 1, 2, . . . , n. The breakdown point is 1.

Examples for this type of generator u are absolutely monotonic increasing

distribution functions u(x) = F (x) F . In this case a = 0 and b = 1.

4 Robustness of special measures

4.1 Price indices

Price indices measuring the cost of living are based on the price of of different goods

and services needed for everyday live. The prices are collected at a regular base

(say monthly). Commonly used price indices are the weighted mean of the change

in price relatively to a base period. We assume that the price and the quantity of

the goods and services are fixed and contain no outlying observations. Outliers can

only occur in the current period. For the german consumer price index it is rather

realistic to assume that outliers in the current prices can occur. Every month about

600 price collectors record 300000 single prices for about 750 goods and services.

For different aspects of the theory of index numbers we refer the reader to Diewert

und Nakamura (1993) and Selvanathan & Rao (1994).
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4.1.1 Laspeyres index

The Laspeyres price index is the weighted arithmetic mean of the relative prices

weighted with the quantities in the base period. These weights are known and non

stochastic. The price for a good or service for the current period is the arithmetic

mean of the repeatedly collected prices.

The Laspeyres price index has the following representation as a functional

TL(F ) =

∑k
i=1E[pit]qi0∑k
i=1 pi0qi0

,

where F is the distribution of all the prices in the current period (p1t, . . . , pkt). The

expected value replaces the arithmetic mean of the collected prices for goods or

services.

Theorem 2 Let TL be the functional of the Laspeyres price index with determin-

istic prices pi0 and quantities qi0 for i = 1, 2, . . . , k. Let F be the k-dimensional

distribution of the price vector (p1t, . . . , pkt). Then the influence function of TL at

(p∗1t, . . . , p
∗
kt) is given by:

IF (p∗1t, . . . , p
∗
kt, TL, F ) =

∑k
i=1(p

∗
it − E[pit])qi0∑k
i=1 pi0qi0

.

Proof: Let Fε be the distribution that is contaminated at (p∗1t, . . . , p
∗
kt), then

TL(Fε) =

∑k
i=1 (E[pit] + ε(p∗it − E[pit])) qi0∑k

i=1 pi0qi0
.

Differentiating with respect to ε results in

dTL(Fε)

dε
=

∑k
i=1(p

∗
it − E[pit])qi0∑k
i=1 pi0qi0

.

This derivative is independent of ε and is therefore the influence function. �

The influence function of the Laspeyres price index is unbounded. This implies

that the Laspeyres price index is sensitive towards outliers in the gathered prices

for the current period. The breakdown point is 1/k if k prices are collected.
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4.1.2 Paasche index

In contrast to the Laspeyres price index, the weight of the Paasche price index is

the quantity of the goods and services in the current period. This implies that the

collected prices as well as the collected quantities can possibly be contaminated with

outliers.

The functional corresponding to the Paasche price index, if only the prices in

the base period are deterministic, is given by

TP (F ) =

∑k
i=1E[pitqit]∑k
i=1 pi0E[qit]

,

where F is the distribution of all prices and quantities(p1t, . . . , pkt, q1t, . . . , qkt).

Theorem 3 Let TP be the functional of the Paasche price index with deterministic

prices pi0 i = 1, 2, . . . , k. Let F be the k dimensional distribution of the combined

vector of prices and quantities (p1t, . . . , pkt, q1t, . . . , qkt). Then the influence function

of TP at (p∗1t, . . . , p
∗
kt, q

∗
1t, . . . , q

∗
kt) is:

IF (p∗1t, . . . , p
∗
kt, q

∗
1t, . . . , q

∗
kt;TP , F ) =

∑k
i=1(p

∗
it − T (F )pi0)q

∗
it∑k

i=1 pi0E[qit]
.

Proof: Let again be Fε the distribution that is contaminated at (p∗1t, . . . , p
∗
kt, q

∗
1t, . . . , q

∗
kt),

then

TP (Fε) =

∑k
i=1 (E[pitqit] + ε(p∗itq

∗
it − E[pitqit]))∑k

i=1 pi0 (E[qit] + ε(q∗it − E[qit]))
.

Differentiating with respect to ε results in

dTP (Fε)

dε
=
N

D

with

N =
k∑

i=1

(p∗itq
∗
it − E[pitqit])

k∑
i=1

(E[qit] + ε(p∗it − E[pit])) pi0

−
k∑

i=1

(E[pitqit] + ε(p∗itq
∗
it − E[pitqit]))

k∑
i=1

(q∗it − E[qit])pi0

and

D =

(
k∑

i=1

(E[pit] + ε(q∗it − E[qit])) pi0

)2

.
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For ε→ 0+ the numerator N converges to

k∑
i=1

p∗itq
∗
it

k∑
i=1

E[qit]pi0 −
k∑

i=1

E[pitqit]
k∑

i=1

q∗itpi0

and the denominator converges to(
k∑

i=1

pi0E[qit]

)2

,

the influence function is

IF (p∗1t, . . . , p
∗
kt, q

∗
1t, . . . , q

∗
kt;TP , F ) =

∑k
i=1(p

∗
it − T (F )pi0)q

∗
it∑k

i=1 pi0E[qit]
. �

Similar to the influence function of the Laspeyres price index, the influence function

of the Paasche price index is not bounded and the breakdown point is 1/k, where k

is the number of considered goods and services.

4.1.3 Fisher index

Functions of different indices inherit the robust properties of the individual indices.

The Fisher price index is the geometric mean of the Laspeyres price index and the

Paasche price index. The influence function for the Fisher price index TF is given

by

IF (p∗1t, . . . , p
∗
kt, q

∗
1t, . . . , q

∗
kt;TF , F ) =

1

2
((TL(F )TP (F ))−1/2(IF (q∗1t, . . . , q

∗
kt;TL, F )TP (F )

+IF (p∗1t, . . . , p
∗
kt, q

∗
1t, . . . , q

∗
kt;TP , F )TL(F ))).

The influence function is unbounded and the functional has a breakdown point of

1/k.

5 Summary

Li, Fang & Tian (1994) assert that generalized means should be preferred over

the arithmetic mean due to its robust properties. The way they determine the

robustness of different means are does not comply with well known and established

tools from robust statistics. In this article we have derived the influence function and
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the breakdown point for quasi-linear means in order to investigate their robustness.

It has been shown that they are not robust in the sense of an unbound influence

function and a sufficiently large breakdown point. Price indices, i.e. Laspeyres,

Paasche and Fisher, can be written as quasi-linear mean and are therefore not robust.
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