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summary

With their 2002 article on Maximum Entropy (ME) densities for time-varying
moments Rockinger and Jondeau (2002) set a new milestone for the application
of information theoretic principles to the analysis of financial market data. In this
note we will apply their approach to financial data, point out some shortcomings
that it encounters and show how these can be overcome.
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1. Introduction

With their 2002 article on Maximum Entropy (ME) densities for time-varying moments
Rockinger and Jondeau (2002) set a new milestone for the application of information the-
oretic principles to the analysis of financial market data. In their article, they implicitly
propose a new framework for time-varying power moments up to order 4 and give an very
efficient algorithm for implementing the corresponding ME densities. When applying their
approach to financial data, we found that the approach with power moments meets some
technical problems, especially in cases typical for financial data. Therefore, we propose to
use robust moment functions, such as e.g. tan−1, to model higher moments and show that
we can overcome that problem. In addition to that we also find improved godness-of-fit
using daily return’s of the market indices S&P 500, FTSE 100 and Nikkei 225 from January
2001 to August 20081 as exemplary data.

Our paper is structured as follows. First we introduce a very general approach to mod-
els for time-varying moments which include Engle (1982)’s and Bollerslev (1986)’s GARCH
model and Rockinger and Jondeau (2002)’s as special cases. Then we give a brief introduc-
tion on how the corresponding ME densities can be derived. The following three sections
point out the limitation of an approach with power moments and give suggestions of mo-
ments that do not encounter that problem. In the the last chapter we apply both methods
to financial data.

1The data has been downloaded from http://de.finance.yahoo.com/.



2. Models for Time-varying Moments using Maximum
Entropy

Models for time-varying moments of some random variable X may generally be written as

Xt|It−1 ∼ F (m1,t, ...,mk,t), (2.1)

where Xt is the random variable at time t, It the information available at time t and F the
random variables distribution at time t of which the only known information is that

mi,t = E (gi(Xt)|It−1) , (2.2)

where gi is some moment function, i = 1, ..., k and k the number of moments to be modelled.
Standard GARCH-models, introduced by Engle (1982) and Bollerslev (1986), can be

considered to be a model for a time varying moment. These models try to capture the
fact, that financial markets volatility is not stable over time. Using variance as a measure
of volatility, these models explain volatility movements by past squared returns and past
variances. In its simplest form, a GARCH(1,1) model is given by

Xt|It−1 ∼ F (µ, σ2
t ), µt|It−1 = µ,

σ2
t |It−1 = α0 + α1x

2
t−1 + α2σ

2
t−1, α0 > 0, α1 + α2 < 1, (2.3)

where F is the (unknown) distribution of e.g. an asset return Xt at a given time t, µ the
distribution’s mean and σ2

t its variance.
We can express this model as a time-varying moment model defined above by choosing

m1,t = µ, g1(a) = a, m2,t = σ2
t = α0 + α1x

2
t + α2σ

2
t−1 and g2(a) = (a− µ)2.

In practical applications, e.g. in order to calculate risk measures or for the ML estima-
tion of the above model the probability density function (pdf) f is required. Of course, the
knowledge of some moments does not completely determine the whole pdf. As a solution
to this problem one can use the principle of Maximum Entropy (ME) to make up for the
information that the model does not capture.2 In the above setting where the only avail-
able information are the distribution’s mean and variance, the resulting maximum entropy
distribution is the normal distribution.3

There is empirical evidence, that financial returns may be well explained by GARCH(1,1)-
models.4 But looking at the distribution of GARCH-filtered residuals (εt), high values for
skew and leptokurtic are often found, which implies that the assumption of normal dis-
tributed innovations may not hold.5

A solution to this problem can be to assume more informative pdfs for the innovation’s
distribution, such as e.g. a skewed t-distribution6. But in consequent application of in-
formation theoretic methods in the above framework, one should rather try not only to

2For the justification of the Maximum Entropy approach in problems of given moments see Jaynes (1957).
3Compare e.g. Cover and Thomas (2006).
4Compare e.g. Bera and Higgins (1993).
5Compare e.g. Bollerslev (1987) or Hansen (1994).
6See Hansen et al. (2007) or Mittnik et al. (1998).



model mean’s and variance’s motion in time, but include additional knowledge in the form
of higher moments. Rockinger and Jondeau (2002) suggest to examine time-varying models
for return distribution’s third and fourth moments, namely skewness and kurtosis. As a
measure for skewness and kurtosis they use third and fourth standardized power moments
as

s = E (g3(X)) = E

((
X − µ
σ

)3
)

and (2.4)

k = E (g4(X)) = E

((
X − µ
σ

)4
)
, (2.5)

and assume these moments to be constant over time or in motion of the form

m3,t = β1 + β2xt−1, m4,t = γ1 + γ2|xt−1| or alternatively (2.6)

m3,t = β1 + β2
xt−1

σt−1
, m4,t = γ1 + γ2|

xt−1

σt−1
|, with (m3,t,m4,t) ∈ E (2.7)

where β1, β2, γ1 and γ2 are constants and E is the set of values of s and k for which a ME
density is defined.

3. Determining Maximum Entropy Densities

Let X denote a random variable following a maximum entropy distribution. From standard
literature of information theory (see e.g. Cover and Thomas (2006)), we know that a ME
distribution pdf’s (here fME) functional form with given four moment functions gi(·) is

fME(x) = exp

(
4∑

i=0

λigi(x)

)
, (3.1)

where g0(x) = 1 and λ0, ..., λ4 are uniquely determined through the side conditions of the
given moment restrictions

E(gi(X)) =
∫
D
gi(x) · fME(x)dx = mi. (3.2)

If e.g. gi(a) = ai, for i = 1, ..., 4, we obtain m0 = 1, m1 = µ, m2 = σ2 + µ2, m3 =
sσ3 + 3σ2µ+ µ3 and m4 = kσ4 + 4sσ3µ+ 6σ2µ2 + µ4.

While the functional dependence of λi from the moment target values mj is known for
the case of given first two power moments as

λ0 = − ln(
√

2πσ)− µ2

2σ2
, λ1 =

µ

σ2
, λ2 =

−1
2σ2

, (3.3)

which is the normal distribution, it is, to our best knowledge, still unknown for cases in-
cluding higher moments.



However, it is possible to determine the values for λ0, ..., λ4 for given m1, ...,m4 through
minimizing a function Q(λ0, ..., λ4), that is convex in λ0, ..., λ4 and for which holds that

∂Q

∂λi
=
∫
D

(gi(x)−mi) · fME(x)dx, (3.4)

where gi is i-th moment function, mi the i-th moment target value and D the distribution’s
support. This minimum in λi is then at the same time solution to the maximum entropy
density problem. In this setting such a dual problem is given by7

Q(λ0, ..., λ4) =
∫
D

exp

(
4∑

i=0

xi −mi

)
dx. (3.5)

There exist different suggestions on how to implement ME densities most efficiently, see e.g.
Ormoneit and White (1999) or Agmon et al. (1979). In this article we follow the approach
proposed by Rockinger and Jondeau (2002).

4. Limitations of the Maximum Entropy Solution

A simple consideration shows that the maximum entropy density in equation (3.1) is not
able to build useful models for all combinations of m0, ...,mN if X is defined on R. To see
this, let us have a look at how the moment target values mi in equation (3.2) depend on λi:

∂mi

∂λi
=
∂
∫
R
gi(x) · fME(x)dx

∂λi
=
∫
R

gi(x)2 · fME(x)dx > 0. (4.1)

So, a slightly higher (lower) target value mi will always result in a higher (lower) value for
the corresponding λi. But taking the limit for the density in equation (3.1) for |x| → ∞ in
the case of g(xi) = xi and even N8

lim
|x|→∞

exp(
N∑

i=0

λigi(x)) = lim
|x|→∞

exp(
N∑

i=0

λix
i) = lim

|x|→∞
exp(λNx

N ) =


0 for λN < 0,

0 or ∞ for λN = 0,

∞ for λN > 0.
(4.2)

We can see, that λN is restricted to negative values or zero to obtain a proper density.
Consequently, there is an upper bound to λN and also to mN . In the case of N = 4 there
is an upper bound to m4

9. This bound is reached when λN is equal to zero, which is,
when the corresponding moment restriction is not binding. So m4 cannot be modeled to be
bigger than implied by mean, variance and skewness, which in the case of no skewness is for
standardized data a value of 3.

7This can be seen by looking at ∂Q
∂λi

. For the convexity of Q in λ compare Rockinger and Jondeau (2002).
8A similar problem arises for odd N , see e.g. Cover and Thomas (2006).
9This has already been observed by Einbu (1977) for ME distributions defined on R+.



Of course, a maximum entropy solution for cases of greater m4 still exists. But as Cover
and Thomas (2006) point out for the case of given first three power moments, this value is
achieved through a density of equation (3.1), but with some small ’wiggles’ somewhere in
the infinity to make up for the higher moments.

5. Solutions on a Truncated Support

Analyzing log-return densities rt of the form

rt = log(pt)− log(pt−1), (5.1)

where pt is the asset price at time t, as we do here, means using densities with infinite
support, so that D = R in the above setting.

As we will show in the sequel, it is sometimes convenient to run numerical procedures
on finite supports. Standardizing the returns to a mean of zero and a variance of one, for
convenience, it is advisable to restrict the support for the above integration to some finite
interval [−z; z] with z ∈ R+.

Approximate equality for the solutions found on truncated and not truncated supports
only holds if the ME solution fME(x) is close to zero for any x ∈ R \ [−z; z], so that

E(gi(X)) =
∫
R

gi(x) · fME(x)dx ≈
∫ z

−z

gi(x) · fME(x)dx = mi, i = 0, 1, .., 4. (5.2)

It is obvious that this cannot hold for cases of higher kurtosis as discussed above.
Using truncated supports will lead to numerical solutions for any possible value for

kurtosis.10 So, by choosing z = 10 and using numerical minimization of Q over λ0, ..., λ4,
we find similar densities as those given by Rockinger and Jondeau (2002), see figure 1,
where the graphs on the left panel have been produced for m4 = 2 and m3 ∈ {0.1, 0.4, 0.7}
and those on the right panel for m3 = 2 and m4 ∈ {6, 8, 10}. As all values found for λ4 are
negative, the results could be applied to infinite intervals as well.

But if we look at cases where the kurtosis is higher than implied be skewness, for example
m3 = −0.1 and m4 = 7 in figure 2, we can see that the density is restricted to the support
that it was found on. Here we increased the support only slightly to [−10.7, 10.7] and
obviously fME is no longer a proper density.11 But as financial data exhibits higher kurtosis
even after filtering for GARCH effects, as mentioned in the beginning, the densities proposed
by Rockinger and Joundeau (2002) are restricted to the closed interval [−z, z].

Of course, one could accept the ME pdfs only to be defined on a finite support. But
then, as the density is increasing faster then exponentially even in the tails of the limited
support, deriving risk measures like the Value at Risk (VaR) can lead to unreasonably high
values.

10A restriction to the possible values of skewness can be found in Rockinger and Jondeau (2002).
11A similar problem appears for λ5 for the mixed moment in the bivariate ME densities proposed in Miller

and Liu (2002).



Figure 1: Pdfs similar to those given by Rockinger and Jondeau (2002).

Figure 2: ME density for m3 = −0.1 and m4 = 7 plotted on [−10; 10] and [−10.7; 10.7].

6. An Alternative ME Density for higher Moments

A solution to this problem may be to alter the way to measure skewness and kurtosis.
Using measures that are functions of X which grow slower in X than the moment function
in E(X2) would enable us to create kurtosis higher than implied by skewness and variance.
So, applying e.g. bounded functions - as it is done in robust statistics - will give better
solutions. Here we propose

E(g3(X)) = E

(
tan−1

(
X

σ

))
and E(g4(X)) = E

(
tan−1

(
X

σ

)2
)

(6.1)



as measures of skewness12 and kurtosis, which leads to a maximum entropy density of the
form:13

fME(x) = exp
(
λ0 + λ1x+ λ2x

2 + λ3tan
−1
(x
σ

)
+ λ4tan

−1
(x
σ

)2
)
. (6.2)

The density function for m3 and m4 chosen that the value for the standardized third and
fourth power moments equals −0.1 and 7 respectively is given in figure 3:

Figure 3: Normal (dotted line) and our ME density on [−10; 10] and [−20; 20].

Of course, the same problem as described in section 2 might also arise. Here the fastest
growing moment function in X is X2, so that we will find an upper bound to the variance.
But the variance implied by tan−1-moments is infinite, as

lim
|x|→∞

x2 · fME(x) = lim
|x|→∞

x2 · exp(λ0 + λ3tan
−1(x) + λ4tan

−1(x)2) =∞. (6.3)

So, the upper bound to variance cannot be reached.
In a time-varying moment framework, as defined above, we could use following model

for the third and fourth moment’s motion in time as:

m3 = β0 + β1tan
−1

(
xt−1

σt−1

)
and m4 = γ0 + γ1tan

−1

(
xt−1

σt−1

)2

, (6.4)

with m3,m4 ∈ E , where E is the area of combinations of m3 and m4 for which corresponding
ME densities can be derived. In the sequel we will use |m3| < .11 and 0.25 < m4 < 0.5.
This area could be largely extended if we examined the relation between m4 and m3 more
closely. But as following applications showed, this area is large enough for the cases relevant
to our exemplary data set.

12E.g. Bera and Premaratne (2005) use tan−1 as a robust measure of skewness.
13Similar suggestions have been made in Bera and Park (2009).



7. Application to the Financial Market Data

Finally, the goodness-of-fit between Rockinger and Jondeau (2002)’s and our approach is
compared. For this purpose, we chose three daily market indices, namely S&P 500, FTSE
100 and Nikkei225 from January 2001 to August 2008 such that roughly 1900 observations
are available for each data set. Table 1 summarizes selected descriptive statistics for the
corresponding log-return series. All of the underlying data set exhibit remarkable kurtosis
and are skewed - at least to some extend and in terms of the fourth and third standardized
moments. In addition, the corresponding robust skewness and kurtosis coefficients are given.

Estimates S&P 500 FTSE 100 Nikkei 225

x 1.78147e-07 4.71454e-05 2.45672e-05

s2 ≡ x2 − x2 0.00012 0.00013 0.00020

(x−x
s )3 -0.08414 0.16220 0.15840

(x−x
s )4 5.35543 6.09638 4.45947

tan−1(x−x
s ) -0.00571 -0.00749 -0.00788

tan−1(x−x
s )2 0.38790 0.37366 0.41101

Number of observations 1925 1934 1882

Table 1: Some descriptive statistics for the data.

In a first step and for reasons of benchmarking, we estimated a Standard-Gaussian
GARCH(1,1)-model where only m2 is time-varying of the form

m2,t = α0 + α1x
2
t + α2m2,t−1, α0 > 0, α1 + α2 < 1, (7.1)

while the others moments m3 = 0 and m4 = 3 are constant over time. The summary
results are displayed in table 2, below.

Indice α0 α1 α2 LogL ε3t ε4t

S&P 500 0.00538 0.06573 0.93030 -2468.048 -0.28253 3.62652

(0.00244) (0.01100) (0.01153) [0.05583] [0.11166]

FTSE 100 0.01070 0.11530 0.87547 -2357.594 -0.31952 3.39483

(0.00334) (0.01478) (0.01515) [0.05570] [0.11140]

Nikkei 225 0.01077 0.07917 0.91228 -2535.948 -0.05553 3.45916

(0.00401) (0.01120) (0.01172) [0.05646] [0.11293]

Table 2: GARCH(1,1) estimates and conditional moments in our exemplary data sets.



Obviously, there is still skewness and kurtosis in the residuals of the model (see ε3t and ε4t )
for all data set, such that the standard GARCH-model is not adequate (which is in line with
other results from the relevant literature). We find strong non-normal kurtosis for all data
sets and strong non-normal skewness for the S&P 500 and the FTSE 100.

Using the test on normality based on skewness and kurtosis proposed by Bera and Jarque
(1980), we reject the null hypothesis of normality in all three cases at high significance levels.
So, the assumption of normally distributed innovations does not hold. Here, LogL denotes
the logarithm of the observations likelihood, in round brackets we give the standard deviation
estimated by the inverse of the numerically estimated Hesse matrix and in box brackets we
give the asymptotic standard deviation for the moment estimates under the assumption of
normal distributed innovations.

Consider, in a second step, the results of a GARCH(1,1)-estimation where the residual
distribution is one of the MED distributions considered above. For reasons of brevity, PO
refers to the approach using power moments and AT to moments using tan−1 in table 3,
below.

S&P 500 FTSE 100 Nikkei 225

PO AT PO AT PO AT

α0 0.00534 0.00501 0.01095 0.01075 0.01022 0.01044

(0.00248) (0.00265) (0.00353) (0.00361) (0.00404) (0.00438)

α1 0.06755 0.06717 0.12453 0.11959 0.07799 0.07952

(0.01108) (0.01215) (0.01648) (0.01647) (0.01152) (0.01253)

α2 0.92810 0.92936 0.86623 0.87145 0.91385 0.91222

(0.01150) (0.01248) (0.01658) (0.01666) (0.01198) (0.01301)

m3 -0.13612 0.00354 -0.15140 0.00517 0.04561 7.060e-05

(0.11077) (0.00355) (0.08994) (0.00346) (0.16065) (0.00355)

m4 3.41645 0.42832 3.27046 0.43674 3.50760 0.43171

(0.89920) (0.00442) (0.63467) (0.00421) (1.42400) (0.00439)

LogL -2461.798 -2453.475 -2352.495 -2350.926 -2532.598 -2526.314

Table 3: Estimates for models with constant higher moments.

Clear, our AT -approach outperforms that of Rockinger and Jondeau (2002) if the log-
likelihood values are compared. This is also confirmed if we consider time-varying models,
where also the higher moments are allowed to vary in time as autoregressive of order one
in a third step (see table 4). In particular, the focus is on both specifications given by
Rockinger and Jondeau (2002), denoted as POva and POvb, and on our specification using
tan−1-moments denoted as ATv.



8. Summary

We showed that the ME approach for including knowledge of higher moments proposed
by Rockinger and Jondeau (2002) produces improper densities in cases for data with high
kurtosis, in particular for financial data. This motivates to use bounded functions for
the incorporation of knowledge of higher moments. In addition,using daily returns of some
major market indices, S&P 500, FTSE 100 and Nikkei 225, we were able to provide empirical
evidence that our approach outperforms that of Rockinger and Jondeau (2002).
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α0 α1 α2 β0 β1 γ0 γ1 LogL

S&P 500

POva 0.00542 0.06519 0.93046 -0.20664 0.00701 4.47258 -0.58301 -2460.707

(0.00246) (0.01088) (0.01129) (0.09045) (0.05622) (0.77397) (0.26331)

POvb 0.00621 0.07869 0.91980 -0.12826 0.38303 4.25616 1.82755 -2457.461

(0.00316) (0.01498) (0.01420) (0.06268) (0.36924) (1.01815) (3.58495)

ATv 0.00515 0.07703 0.92297 0.00302 -0.01866 0.43765 -0.03351 -2447.483

(0.00289) (0.01489) (0.01382) (0.00353) (0.00656) (0.00620) (0.01578)

FTSE 100

POva 0.01042 0.12418 0.86754 -0.23860 0.02164 3.05670 1.43632 -2350.662

(0.00343) (0.01637) (0.01618) (0.08681) (0.07551) (0.17491) (1.04020)

POvb 0.01093 0.12380 0.86762 -0.23877 0.01715 3.07572 0.85802 -2350.331

(0.00345) (0.01637) (0.01630) (0.08270) (0.02879) (0.17907 ) (0.43905)

ATv 0.01054 0.12239 0.87006 0.00612 -0.00243 0.44509 -0.02055 -2349.066

(0.00357) (0.01760) (0.01695) (0.00352) (0.00562) (0.00599) (0.01142)

Nikkei 225

POva 0.01007 0.08256 0.91203 -0.13152 -0.50597 4.08602 2.31427 -2526.561

(0.00416) (0.01587) (0.01306) (0.08749) (0.60908) (1.12884) (6.64341)

POvb 0.01128 0.07921 0.91233 0.11143 -0.06931 3.15519 1.78052 -2530.722

(0.00440) (0.01194) (0.01246) (0.13987) (0.11708) (0.86144) (2.06080)

ATv 0.01020 0.08073 0.91201 0.00059 0.00487 0.43571 -0.01137 -2525.670

(0.00436) (0.01337) (0.01328) (0.00362) (0.00615) (0.00617) (0.01316)

Table 4: Estimates for models with time-varying higher moments.




