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summary

We present a non-parametric tail dependence estimator which arises naturally
from a specific regression model. Above that, this tail dependence estimator also
results from a specific copula mixture.
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1 Coefficients of Tail Dependence (TDC)

Let X and Y denote two random variables with joint distribution FX,Y (x, y) and continuous
marginal distribution functions FX(x) and FY (y). According to Sklar’s (1960) fundamental
theorem, there exists a unique decomposition

FX,Y (x, y) = C(FX(x), FY (y))

of the joint distribution into its marginal distribution functions and the so-called copula
(function)

C(u, v) = P (U ≤ u, V ≤ v), U ≡ FX(X), V ≡ FY (Y )

on [0, 1]2 which comprises the information about the underlying dependence structure (For
details on copulas we refer to Joe, 1997). The concept of tail dependence provides, roughly
speaking, a measure for extreme co-movements in the lower and upper tail of FX,Y (x, y),
respectively. The upper tail dependence coefficient (TDC) is usually defined by

λU ≡ lim
u→1−

P (Y > F−1
Y (u)|X > F−1

X (u)) = lim
u→1−

1− 2u + C(u, u)
1− u

∈ [0, 1]. (1.1)

noting that λU is solely depending on C(u, v) and not on the marginal distributions. Anal-
ogously, the lower TDC is defined as

λL ≡ lim
u→0+

P (Y ≤ F−1
Y (u)|X ≤ F−1

X (u)) = lim
u→0+

C(u, u)
u

. (1.2)

Coles et al. (1999) provide asymptotically equivalent versions of (1.1) and (1.2),

λL = 2− lim
u→0+

log(1− 2u + C(u, u))
log(1− u)

and λU = 2− lim
u→1−

log C(u, u)
log(u)

. (1.3)

For reason of brevity, we focus on the upper TDC λU . Results on the lower TDC can be
obtained in a similar manner.



2 Reviewing non-parametric TDC-estimators

For a given (bivariate) random sample of length n (X1, Y1), . . . , (Xn, Yn) from (X, Y ) let

X(1) ≡ min{X1, . . . , Xn} ≤ . . . ≤ X(n) ≡ max{X1, . . . , Xn}
denote the corresponding order statistics. All of the relevant non-parametric TDC-estimator
λ̂U of λU (See, e.g., Schmidt & Stadtmüller, 2006, Frahm, Junker & Schmidt, 2005 and
Dobric & Schmid, 2005) rest upon the non-parametric copula estimator

Cn(i/n, j/n) =
1
n

n∑

l=1

1(Xl ≤ X(i), Yl ≤ Y(j)). (2.1)

Plugging (2.1) into equation (1.1) and its asymptotically equivalent version (1.3), respec-
tively, a first pair of estimators is obtained (via ”simple replacement”)

λ̂
[1]
U ≡ Cn ((1− k/n, 1]× (1− k/n, 1])

1− (1− k/n)
and λ̂

[2]
U = 2− log Cn(1− k/n, 1− k/n)

log(1− k/n)
,

where k ≈ √
n seems to be appropriate (cp. Dobric & Schmid, 2005, section 4). Secondly,

Dobric & Schmid (2005) interpret equation (1.1) after suitable re-formulations as regression
equation

Cn ((1− i/n, 1]× (1− i/n, 1]) = λU · i

n
+ εi, i = 1, . . . , k (2.2)

which motives λ̂
[3]
U as OLS-estimator of equation (2.2). Thirdly, Dobric & Schmid (2005)

propose to approximate the unknown copula C(u, v) by the convex-combination C̃(u, v) ≡
α min{u, v}+ (1− α)uv of the maximum (co-monotonicity) copula min{u, v} and the inde-
pendence copula C⊥(u, v) = uv (i.e. copula B11 in Joe, 1997). Noting that λU of C̃ is given
by α, Dobric & Schmid (2005) introduce λ̂

[4]
U which corresponds to that α which minimizes

F (α) ≡
k∑

i=1

(
Cn

(
1− i

n
, 1− i

n

)
− C̃

(
1− i

n
, 1− i

n

))2

.

The following tables classifies the above-mentioned estimators λ̂
[i]
U , i = 1, . . . , 4. By the end

Underlying method

Underlying formula ↓ Simple replacement Regression approach Approximation

(1.1) λ̂
(1)
U

√
λ̂

(3)
U

√
λ̂

(4)
U

√

(1.3) λ̂
(2)
U

√
λ̂

(5)
U λ̂

(6)
U

Table 1: A classification scheme of non-parametric TDC estimators.

of this work we present an TDC-estimator λ
(6)
U which coincides with the TDC-estimator

λ
(5)
U which arises from a regression equation derived from TDC-formula (1.3).
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3 Derivation of a new non-parametric TDC-estimator

Instead of considering the arithmetic mean of the independence copula C⊥ and the co-
monotonicity copula CU , we now focus on the geometric mean of C⊥ and CU (i.e. copula
family B12 in Joe, 1997), that is

C∗(u, v) = (min{u, v})δ · (uv)1−δ, δ ∈ [0, 1]. (3.1)

We first proof that δ corresponds to the lower TDC of C: Using equation (1.3),

λU = 2− lim
u→1−

log C∗(u, u)
log(u)

= 2− lim
u→1−

log(u2−δ)
log(u)

= δ.

In accordance to Dobric & Schmid (2005), approximating the (unknown) copula C(u, v) by
C∗(u, v), an estimator for λU is given by

λ̂
(6)
U = argminλ∈[0,1]

k∑

i=1

(
Cn

(
1− i

n
, 1− i

n

)
−

(
1− i

n

)2−λ
)2

. (3.2)

We next show that λ̂
(6)
U equals λ̂

(5)
U , a new estimator which results from an LS-estimaton of

the equation

log Cn

(
1− i

n
, 1− i

n

)
= (2− λU ) · log

(
i

n

)
+ εi, i = 1, . . . , k (3.3)

which itself follows from the Coles et al. (1999) formula (1.3) in combination with (2.1).

Lemma 3.1. The tail dependence estimator λ̂
(6)
U and λ̂

(5)
U are asymptotically equivalent.

Proof: We first observe that the LS estimator can be represented as

λ̂
(5)
U = argminλ∈[0,1]

k∑

i=1

(
log Cn

(
1− i

n
, 1− i

n

)
− (2− λ) · log

(
1− i

n

))2

.

Now, using the relationship log(yd) ≈ 1− yd for y ≈ 1 and d ∈ [0, 1],

λ̂
(5)
U = argminλ∈[0,1]

k∑

i=1

(
log Cn

(
1− i

n
, 1− i

n

)
− log

(
1− i

n

)2−λ
)2

.

≈ argminλ∈[0,1]

k∑

i=1

(
1− Cn

(
1− i

n
, 1− i

n

)
− 1 +

(
1− i

n

)2−λ
)2

= argminλ∈[0,1]

k∑

i=1

(
Cn

(
1− i

n
, 1− i

n

)
−

(
1− i

n

)2−λ
)2

= λ̂(6). ¤
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