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SUMMARY

We present a non-parametric tail dependence estimator which arises naturally
from a specific regression model. Above that, this tail dependence estimator also
results from a specific copula mixture.
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1 Coefficients of Tail Dependence (TDC)

Let X and Y denote two random variables with joint distribution F'x y (x,y) and continuous
marginal distribution functions Fx (z) and Fy (y). According to Sklar’s (1960) fundamental
theorem, there exists a unique decomposition

Fxy(z,y) = C(Fx(2), Fy (y))

of the joint distribution into its marginal distribution functions and the so-called copula

(function)
C(u,v) =PU <,V <w), U=Fx(X), V=F({)

on [0,1]? which comprises the information about the underlying dependence structure (For
details on copulas we refer to Joe, 1997). The concept of tail dependence provides, roughly
speaking, a measure for extreme co-movements in the lower and upper tail of Fx y(z,y),
respectively. The upper tail dependence coefficient (TDC) is usually defined by

Ao = lim P(Y > By )|X > Fyl(u) = lim L2t ¢

u—1- u—1- 1—u

e [0,1]. (1.1)

noting that Ay is solely depending on C(u,v) and not on the marginal distributions. Anal-
ogously, the lower TDC is defined as

. _ _ . Clu,u)
AL = lim P(Y < Fy'(w)|X < Fy'(u) = lim ———. 1.2
L= lim P(Y < Fy (w)X < Fy (w)) = lim —— (1.2)
Coles et al. (1999) provide asymptotically equivalent versions of (1.1) and (1.2),
log(1 —2u+C log C
A= lim el 20t Cww) gy o iy 108G (1.3)
u—0+ log(1 — u) u—1-  log(u)

For reason of brevity, we focus on the upper TDC Ay. Results on the lower TDC can be
obtained in a similar manner.



2 Reviewing non-parametric TDC-estimators

For a given (bivariate) random sample of length n (X1,Y7),...,(X,,Y,) from (X,Y) let
Xay =min{Xy,..., X,} <... < X)) = max{Xy,..., X, }

denote the corresponding order statistics. All of the relevant non-parametric TDC-estimator
Au of Ay (See, e.g., Schmidt & Stadtmiiller, 2006, Frahm, Junker & Schmidt, 2005 and
Dobric & Schmid, 2005) rest upon the non-parametric copula estimator

1 n
Co(i/n,j/n) = EZ1 (X1 < X, Y1 < Yy)) (2.1)
=1

Plugging (2.1) into equation (1.1) and its asymptotically equivalent version (1.3), respec-
tively, a first pair of estimators is obtained (via ”simple replacement”)

Cn((1=k/n,1] x (1 —Ek/n,1]) logCr (1 — k/n,1 —k/n)

N ’ A2 o
Aut = 1—(1—k/n) and - Ag log(1 — k/n) ’

where k ~ /n seems to be appropriate (cp. Dobric & Schmid, 2005, section 4). Secondly,
Dobric & Schmid (2005) interpret equation (1.1) after suitable re-formulations as regression
equation

Co (1 —i/n,1] x (1 —i/n,1]) = Ay - % Ve, di=1,....k (2.2)
which motives Xg] as OLS-estimator of equation (2.2). Thirdly, Dobric & Schmid (2005)
propose to approximate the unknown copula C(u,v) by the convex-combination C (u,v) =
amin{u,v} + (1 — a)uv of the maximum (co-monotonicity) copula min{u,v} and the inde-
pendence copula C (u,v) = uv (i.e. copula B11 in Joe, 1997). Noting that Ay of Cis given
by «, Dobric & Schmid (2005) introduce X[é] which corresponds to that o which minimizes

o= (e (- 1) e (--3)

The following tables classifies the above-mentioned estimators Xg}], i=1,...,4. By the end

Underlying method

Underlying formula | | Simple replacement | Regression approach | Approximation

(1.1) YRRV, YRV, YRR,
(1.3) YR Ay A

Table 1: A classification scheme of non-parametric TDC estimators.

of this work we present an TDC-estimator )\gj) which coincides with the TDC-estimator

)\S)) which arises from a regression equation derived from TDC-formula (1.3).



3 Derivation of a new non-parametric TDC-estimator

Instead of considering the arithmetic mean of the independence copula C; and the co-
monotonicity copula Cy, we now focus on the geometric mean of C';, and Cy (i.e. copula
family B12 in Joe, 1997), that is

C*(u,v) = (min{u,v})’ - (ww)' =%, §€0,1]. (3.1)
We first proof that & corresponds to the lower TDC of C: Using equation (1.3),

1 * 1 2—0
Ao =2 lim 8T o o)

—_ = 4.
u—1-  log(u) u—1- log(u)

In accordance to Dobric & Schmid (2005), approximating the (unknown) copula C(u,v) by
C*(u,v), an estimator for Ay is given by

k . . SN 2 2

- , i i :

)\gjﬁ) = argminy g 1) E <Cn (1 s 1-— n) — (1 — n) ) . (3.2)
i=1

We next show that Xg?) equals :\\g)), a new estimator which results from an LS-estimaton of
the equation

n

logCn<1;,1Z>_(2/\U) 10g< )+s,, i=1,....k (3.3)

which itself follows from the Coles et al. (1999) formula (1.3) in combination with (2.1).
Lemma 3.1. The tail dependence estimator ng) and X(L?) are asymptotically equivalent.
Proof: We first observe that the LS estimator can be represented as

~(5) , . i i i)’

Ay’ = argminygg g ; (logCn <1 o 1-— n) —(2=X) - log (1 - n)> .

Now, using the relationship log(y?) ~ 1 — y? for y =~ 1 and d € [0, 1],

k - 2-A
argminy g, 1] Z <log 1 - — 1 — n) —log (1 — :L) )
i=1
A

NG
N

k ) oo 2
al”gmmAeo71]Z<1 Cn 1—,1—:1)—14-(1—:1) >

i=1
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= argmin,, 07115
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