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Lehrstuhl f̈ur Statistik und empirische Wirtschaftsforschung

Lange Gasse 20· D-90403 N̈urnberg





Kurtosis ordering of the generalized secant hyperbolic
distribution – A technical note

Ingo Klein and Matthias Fischer
Department of Statistics and Econometrics,

University of Erlangen-Nuremberg

Abstract: Two major generalizations of the hyperbolic secant distribution
have been proposed in the statistical literature which both introduce an addi-
tional parameter that governs the kurtosis of the generalized distribution. The
generalized hyperbolic secant (GHS) distribution was introduced by Hark-
ness and Harkness (1968) who considered the p-th convolution of a hyper-
bolic secant distribution. Another generalization, the so-called generalized
secant hyperbolic (GSH) distribution was recently suggested by Vaughan
(2002). In contrast to the GHS distribution, the cumulative and inverse cu-
mulative distribution function of the GSH distribution are available in closed-
form expressions. We use this property to proof that the additional shape pa-
rameter of the GSH distribution is actually a kurtosis parameter in the sense
of van Zwet (1964).
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1 Introduction

The hyperbolic secant distribution — which was studied by Baten (1934) and Talacko
(1956) — has not received sufficient attention in the literature, although it has a lot of
nice properties: All moments and the moment-generating function exist, it is reproduc-
tive (i.e. the class is preserved under convolution) and both the cumulative and the inverse
cumulative distribution function admit a closed form. In addition, the hyperbolic secant
distribution exhibits more leptokurtosis than the normal and even more than the logistic
distribution. Nevertheless, generalizations have been proposed that introduce an addi-
tional parameter which increase the ”kurtosis” of the hyperbolic secant distribution. At
first, Baten (1934) discussed the sum ofn independent random variables, each having the
same hyperbolic secant distribution. More general, Harkness and Harkness (1968) inves-
tigated thep-th convolution of hyperbolic secant variables for arbitrary positivep > 0
which, unfortunately, doesn’t admit a closed-form representation for the cumulative and
the inverse cumulative distribution function. Recently, Vaughan (2002) suggested a fam-
ily of symmetric distributions, the so-called generalized secant hyperbolic (GSH) dis-
tribution. This family includes both the hyperbolic secant and the logistic distribution.
Moreover, it closely approximates the Student t-distribution with corresponding kurtosis.
In addition, the moment-generating function and all moments exist, and the cumulative
and inverse cumulative distribution are again available in closed form. The range of ”kur-
tosis” — measured by the fourth standardized moments — varies from1.8 to infinity.
Within this note we proof that the additional parameter of the GSH distribution is indeed
a kurtosis parameter which preserves the kurtosis ordering of van Zwet (1964).



2 The generalized secant hyperbolic (GSH) distribution

The above-mentioned standardgeneralized secant hyperbolic(GSH) distribution – which
is able to model both thin and fat tails – was introduced by Vaughan (2002) and has
density

fGSH(x; t) = c1(t) ·
exp(c2(t)x)

exp(2c2(t)x) + 2a(t) exp(c2(t)x) + 1
, x ∈ R (1)

with

a(t) = cos(t), c2(t) =
√

π2−t2

3
, c1(t) = sin(t)

t
· c2(t), for − π < t ≤ 0,

a(t) = cosh(t), c2(t) =
√

π2+t2

3
, c1(t) = sinh(t)

t
· c2(t), for t > 0

.

The density from (1) is chosen so thatX ∼ fGSH(x) has zero mean and unit variance,
the range of the ”kurtosis parameter”t is ∈ (−π,∞). The GSH distribution includes the
logistic distribution (t = 0) and the hyperbolic secant distribution (t = −π/2) as special
cases and the uniform distribution on(−

√
3,
√

3) as limiting case fort → ∞. Vaughan
(2002) derived, amongst other properties, the cumulative distribution function, depending
on the parametert, given by

FGSH(x; t) =


1 + 1

t
arccot

(
− exp(c2(t)x)+cos(t)

sin(t)

)
for t ∈ (−π, 0),

exp(πx/
√

3)

1+exp(πx/
√

3)
for t = 0,

1− 1
t
arccoth

(
exp(c2(t)x)+cosh(t)

sinh(t)

)
for t > 0.

the inverse distribution function, given by

F−1
GSH(u; t) =


1

c2(t)
ln
(

sin(tu)
sin(t(1−u))

)
für t ∈ (−π, 0),

√
3

π
ln
(

u
1−u

)
für t = 0,

1
c2(t)

ln
(

sinh(tu)
sinh(t(1−u))

)
für t > 0.

However, it was not proved that the ”kurtosis parameter”t is actually a kurtosis parameter
in the sense of van Zwet(1964). This will be done in the next section.

3 GSH distribution and kurtosis ordering

Van Zwet (1964) introduced a partial ordering of kurtosis�S on the set of symmetric
distribution functionsF s. Let F, G ∈ F s andµF denote the location of symmetry ofF ,
then�S is defined by

(A) F �S G : ⇐⇒ G−1(F (x)) is convex forx > µF

and means thatG has higher kurtosis thanF . Balanda and MacGillivray (1990) gener-
alized this partial ordering of van Zwet by using so-called spread functions defined as
symmetric differences of quantiles:

SF (u) = F−1(u)− F−1(1− u), u ≥ 0.5.



In the sense of Balanda and MacGillivray (1990), an arbitrary continuous, monotone in-
creasing distribution functionF has less kurtosis than an equally distribution functionG
if

(B) F �S G : ⇐⇒ SG(S−1
F (x)) is convex forx > F−1(0.5).

If F is symmetric,F−1(u) = −F−1(1− u) for u > 0.5, so thatSF (u) = 2F−1(u) u ≥
0.5. This means that the spread function essentially coincides with the quantile function.
It can be shown that (A) and (B) coincide in this case. The aim of this note is to prove
that the parametert from (1) is a kurtosis parameter in the sense of van Zwet (1964).

Proposition 3.1 (Kurtosis ordering) Assume thatX1 (X2) follows a generalized secant
hyperbolic distribution with parametert1 (t2) and corresponding cumulative distribution
functionsF1 (F2). If t1 < t2, thenF2 �S F1, i.e. F1 has higher kurtosis thanF2 (in the
sense of van Zwet).

Proof: To prove this result, we distinguish between 4 cases:

Case 1: −π ≤ t1 < t2 < 0,

Case 2: −π ≤ t1, t2 = 0,

Case 3: t1 = 0, t2 > 0,

Case 4: 0 < t1 < t2

and refer to transitivity which was shown by Oja (1981, Theorem 5.1). According to
equation (A), we have to show that

F−1
1 (F2(u)) is convex for1/2 ≤ u < 1

or, equivalently,

A(u) ≡ ∂F−1
1 (u)/∂u

∂F−1
2 (u)/∂u

is strictly monotone increasing for1/2 ≤ u < 1.

Case 1: Assume−π ≤ t1 < t2 < 0.

Preliminary remarks: If−π ≤ t1 < t2 < 0 and1/2 ≤ u < 1, then t1(u − 1/2) ∈
[−π/2, 0] andt2(u − 1/2) ∈ [−π/2, 0] . Moreover, bothsin(x) andcos(x) are strictly
monotone increasing on[−π/2, 0].

Part 1: ParaphrasingA(u). Firstly,

∂F−1
i (u)

∂u
= ti/c2(ti)

[
cot(tiu) + cot(ti(1− u))

]
for 0 < u < 1, i = 1, 2.

Consequently,

A(u) =
t1/c2(t1)

t2/c2(t2)
· cot(t1u) + cot(t1(1− u))

cot(t2u) + cot(t2(1− u))
.



Usingcot(α) + cot(β) = sin(α+β)
sin(α) sin(β)

(see Bronstein and Semendjajew, [2.5.2.1.1]),

A(u) =
t1/c2(t1)

t2/c2(t2)
·

sin(t1)
sin(t1u) sin(t1(1−u))

sin(t2)
sin(t2u) sin(t2(1−u))

=
t1/c2(t1) sin(t1)

t2/c2(t2) sin(t2)
· sin(t2u) sin(t2(1− u))

sin(t1u) sin(t1(1− u))
.

Now, becauseπ ≤ t1 < t2 < 0, sin(t1) < 0 andsin(t2) < 0. Hence,

K(t1, t2) ≡
t1/c2(t1) sin(t1)

t2/c2(t2) sin(t2)
> 0.

Finally, usingsin(α) sin(β) = 1/2(cos(α−β)−cos(α+β)) (see Bronstein and Semend-
jajew, [2.5.2.1.1]),

A(u) = K(t1, t2) ·
cos(2t2(u− 1/2))− cos(t2)

cos(2t1(u− 1/2))− cos(t1)
> 0,

becausecos(x) is strictly monotone increasing forx ∈ [−π, 0).

Part 2: Proof of the convexity. We have to show thatA(u) is strictly monotone increasing
on [1/2, 1). This is true, ifA′(u) > 0 for [1/2, 1):

A′(u) =
K(t1, t2)

N

{(
− sin(2t2(u− 1/2))2t2

)
·
(

cos(2t1(u− 1/2))− cos(t1)
)

−
(
− sin(2t1(u− 1/2))2t1

)
·
(

cos(2t2(u− 1/2))− cos(t2)
)}

with N ≡ [cos(2t1(u − 1/2)) − cos(t1)]
2 > 0. Using the monotony of the cosinus on

[−π, 0),

−2t2(cos(2t1(u− 1/2))− cos(t1)) > 0 and − 2t1(cos(2t2(u− 1/2))− cos(t2)) > 0

for 1/2 ≤ u < 1 and−π ≤ t1 < t2 < 0. Defining

K∗(t1, t2, u) ≡ min
{
−2t2(cos(2t1(u−0.5))−cos(t1));−2t1(cos(2t2(u−0.5))−cos(t2))

}
,

we get

A′(u) ≥ K(t1, t2)K
∗(t1, t2, u)

N

(
sin(2t2(u− 1/2))− sin(2t1(u− 1/2))

)
=

K(t1, t2)K
∗(t1, t2, u)

N

(
2 sin(t2(u− 1/2)) cos(t2(u− 1/2))

− 2 sin(t1(u− 1/2)) cos(t1(u− 1/2))
)
,

where we usedsin(2α) = 2 sin(α) cos(α) (see Gradshteyn and Ryzhik, [1.333.1]). Ac-
cording to the preliminary remarks,

sin(t2(u− 1/2)) cos(t2(u− 1/2))− sin(t1(u− 1/2)) cos(t1(u− 1/2)) > 0



for −π ≤ t1 < t2 < 0 and1/2 ≤ u < 1 implying thatA′(u) > 0 for 1/2 ≤ u < 1.

Case 2: Assumet1 ∈ [−π, 0) andt2 = 0.

The inverse distribution function of a GSH variable witht2 = 0 is given by

F−1
2 (u) =

√
3

π
ln

(
u

1− u

)
, 0 < u < 1.

Consequently, for0 < u < 1,

∂F−1
2 (u)

∂u
=

√
3

π

(
1

u
+

1

1− u

)
=

√
3

π

(
1

u(1− u)

)
.

Thus, for−π < t2 < 0 and0 < u < 1,

A(u) =
∂F−1

1 (u)/∂u

∂F−1
2 (u)/∂u

=
t1/c2(t1)[cot(t1u) + cot(t1(1− u))]√

3/π · 1/(u(1− u))

=
t1/c2(t1)√

3/π

sin(t1)(u(1− u))

sin(t1u) sin(t1(1− u))
=

π sin(t1)

c2(t1)t1
√

3
· (t1u)(t1(1− u))

sin(t1u) sin(t1(1− u))
.

The first derivation is given by

A′(u) = K(t1)

(
t1 sin(t1u)− (t1)

2u cos(t1u)

sin(t1u)2
· t1(1− u)

sin(t1(1− u))

+
−t1 sin(t1(1− u)) + (t1)

2(1− u) cos(t1(1− u))

sin(t1(1− u))2
· t1u

sin(t1u)

)
=

K(t1)t1t1ut1(1− u)

sin(t1u) sin(t1(1− u))

([ 1

t1u
− cot(t1u)

]
−
[ 1

t1(1− u)
− cot(t1(1− u))

])
for −π < t1 < 0 and0 < u < 1 with

K(t1) ≡
π sin(t1)

c2(t1)t1
√

3
> 0.

Note that a series expansion to thecot(x) for 0 < |x| < π (see Gradshteyn and Ryzhik,
[1.441.7]) is given by

cot(x) =
1

x
−

∞∑
i=1

22i|B2i|
(2i)!

x2i−1, (2)

whereBi, i = 1, 2, . . ., denotes the numbers of Bernoulli. Applying (2) forx = t1u and
x = t1(1− u),

A′(u) = K(t1)t1
t1ut1(1− u)

sin(t1u) sin(t1(1− u))

(
∞∑
i=1

22i|B2i|
(2i)!

(t1u)2i−1 −
∞∑
i=1

22i|B2i|
(2i)!

(t1(1− u))2i−1

)
.

For−π < t1 < 0,

K(t1)t1
t1ut1(1− u)

sin(t1u) sin(t1(1− u))
< 0.



The term in brackets is negative becauset1(1−u) > t1u and(t1(1−u))2i−1 > (t1u)2i−1,
i = 1, 2, . . . for 1/2 < u < 1 and t1 < 0. Combining both results,A′(u) > 0 for
−π < t1 < 0 and1/2 < u < 1. This completes the proof of case 2.

Case 3: Assumet1 = 0 andt2 > t1.

As calculated above,

∂F−1
2 (u)

∂u
=

t2
c2(t2)

·
[
coth(t2u) + coth(t2(1− u))

]
, 0 < u < 1,

with c2(t2) =

√
π2+t22

3
> 0 for t2 > 0. It now follows that

A(u) =
∂F−1

1 (u)/∂u

∂F−1
2 (u)/∂u

=

√
3/π

t2/c2(t2)
· 1/(u(1− u))

coth(t2u) + coth(t2(1− u))

=

√
3t2/π

sinh(t2)/c2(t2)
· sinh(t2u) sinh(t2(1− u))

t2ut2(1− u)
.

Defining

K(t2) ≡
√

3t2/π

sinh(t2)/c2(t2)
> 0 for t2 > 0,

then – analogue to case 2, but now using hyperbolic functions – fort2 > 0,

A′(u) = K(t2)t2 ·
sinh(t2u) sinh(t2(1− u))

t2ut2(1− u)
·
([

coth(t2u)− 1/(t2u)
]

−
[
coth(t2(1− u))− 1/(t2(1− u))

])
Now definez(x) ≡ coth(x) − 1/x which is strictly monotone increasing forx > 0,
because by means ofsinh(x) > x for x > 0,

z′(x) = − 1

(sinh(x))2
+

1

x2
> 0.

Hence, fromt2(1− u) < t2u for 1/2 < u < 1 andt2 > 0 follows[
coth(t2u)− 1/(t2u)

]
−
[
coth(t2(1− u))− 1/(t2(1− u))

]
> 0,

This completes the proof of case 3.



Case 4: Assumet1 > 0 andt2 > t1.

Similar to case 1 we have for0 < u < 1

A(u) =
t1/c2(t1)

t2/c2(t2)
·

sinh(t1)
sinh(t1u) sin(t1(1−u))

sinh(t2)
sin(t2u) sinh(t2(1−u))

=
t1/c2(t1) sinh(t1)

t2/c2(t2) sinh(t2)
· sinh(t2u) sinh(t2(1− u))

sinh(t1u) sinh(t1(1− u))
.

Defining

K(t1, t2) ≡
t1/c2(t1)

t2/c2(t2)

sinh(t1)

sinh(t2)
> 0,

the first derivative ofA is given by

A′(u) = K(t1, t2) ·
sinh(t2u) sinh(t2(1− u))

sinh(t1u) sinh(t1(1− u))

·
[
t2(coth(t2u)− coth(t2(1− u)))− t1(coth(t1u)− coth(t1(1− u)))

]
.

Now,

z(t) = coth(tu)− coth(t(1− u)) is stictly monotone increasing fort > 0, (3)

if the first derivativez′(t) is positive: Fort > 0, 1/2 < u < 1,

1− u

[sinh(t(1− u)))]2
− u

[sinh(tu)]2
> 0 ⇐⇒

t(1− u)

[sinh(t(1− u)))]2
− tu

[sinh(tu)]2
> 0 ⇐⇒

1− tu

t(1− u)

[sinh(t(1− u))]2

[sinh(tu)]2
> 0 ⇐⇒

[sinh(t(1−u))]2

t(1−u)

[sinh(tu)]2

tu

< 1.

To prove the last inequality, we show thatf(x) = [sinh(x)]2

x
is monotone increasing for

x > 0. Usingx ≥ tanh(x),

f ′(x) =
2 sinh(x) cosh(x)x− [sinh(x)]2

x2
=

[cosh(x)]2

x2

(
2 tanh(x)x− [tanh(x)]2

)
≥ [cosh(x)]2

x2
tanh(x)x ≥ 0.

From equation (3) follows that

coth(t2u)− coth(t2(1− u)) > coth(t1u)− coth(t1(1− u))

and

t2

[
coth(t2u)− coth(t2(1− u))

]
− t1

[
coth(t1u)− coth(t1(1− u))

]
> 0.

Consequently,A′(u) > 0 for 1/2 < u < 1. �
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