
Friedrich-Alexander-Universität

Erlangen-Nürnberg

Wirtschafts-und Sozialwissenschaftliche

Fakultät

Diskussionspapier

46 / 2002

Skew Generalized Secant Hyperbolic

Distributions: Unconditional and

Conditional Fit to Asset Returns

Matthias Fischer

Lehrstuhl für Statistik und Ökonometrie
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Abstract

A generalization of the hyperbolic secant distribution which allows both
for skewness and for leptokurtosis was given by Morris (1982). Recently,
Vaughan (2002) proposed another flexible generalization of the hyperbolic se-
cant distribution which has a lot of nice properties but is not able to allow
for skewness. For this reason, Fischer and Vaughan (2002) additionally intro-
duced a skewness parameter by means of splitting the scale parameter and
showed that most of the nice properties are preserved. We briefly review both
classes of distributions and apply them to financial return data. By means of
the Nikkei225 data, it will be shown that this class of distributions – the so-
called skew generalized secant hyperbolic distribution – provides an excellent
fit in the context of unconditional and conditional return models.

JEL classification: C22; G12

Keywords: SGSH distribution; NEF-GHS distribution; skewness; GARCH; APARCH

1 Introduction

The hyperbolic secant distribution — which was first studied by Baten (1934) and

Talacko (1956) — seems to be an appropriate candidate as a starting point for finan-

cial return models: Firstly, it exhibits more leptokurtosis than the normal and even

more than the logistic distribution. Secondly, the cumulative distribution function

admits a closed form implying that, for example, risk neutral probabilities of option

prices can be calculated fast and accurate. Thirdly, this distribution is reproduc-

tive (i.e. the class is preserved under convolution), infinitely divisible with existing



moment-generating function and has finite moments. Since 1956, two generalization

have been proposed which both incorporate most of these properties, too and, in

addition, allow for a more flexible form concerning skewness and leptokurtosis.

The first generalization was proposed by Morris (1982) in the context of natural

exponential families (NEF) with quadratic variance function (i.e. the variance is

a quadratic function of the mean). In this class, consisting of six members, one

distribution — the so-called NEF-GHS distribution — is generated by the hyperbolic

secant distribution. The NEF-GHS distribution allows for skewness and arbitrarily

high excess kurtosis. Morris (1982) showed that this class is again reproductive,

infinitely divisible with existing moment-generating function and existing moments.

However, the corresponding cumulative distribution function doesn’t admit a closed

form.

Recently, Vaughan (2002) suggested a family of symmetric distributions — the so-

called generalized secant hyperbolic (GSH) distribution — with kurtosis ranging from

1.8 to infinity. This family includes both the hyperbolic secant and the logistic dis-

tribution and closely approximates the Student t-distribution with corresponding

kurtosis. In addition, the moment-generating function and all moments exist, and

the cumulative distribution is given in closed form. Unfortunately, this family does

not allow for skewness. For this purpose, Fischer and Vaughan (2002) introduced

a skewness parameter by means of splitting the scale parameter according to Fer-

nandez, Osiewalski and Steel (1995). This method preserves the closed form for the

density, the cumulative distribution function, the inverse cumulative distribution

function.

It will be shown that this family — termed as skew generalized secant hyperbolic

distribution (SGSH) — provides an excellent fit to the Nikkei225 data. This is

verified in the context of unconditional and conditional return models. In particular,

we compare the results to other popular return models which have been proposed

in the literature in the past: The α-stable distributions (see, for example, Mittnik

et al. (1998)), the class of generalized hyperbolic distributions (see, for example,

Prause (1999)), the generalized logistic family of McDonald (1991) and the skewed

generalized t-distribution of the second kind of Grottke (2002).



2 Generalizations of Hyperbolic Secant Distribu-

tions

2.1 (Generalized) Hyperbolic Secant distribution

A symmetric random variableX is said to follow a hyperbolic secant (HS) distribution

if its probability density function (with unit variance) is given by

fHS(x) =
1

2 cosh (πx/2)

or, equivalently, its cumulative distribution function is given by

FHS(x) =
1

2
+

1

π
arctan(sinh(πx/2)).

This distribution is more leptokurtic than the normal, even more leptokurtic than

the logistic distribution and has a kurtosis coefficient (measured by the fourth stan-

dardized moment) of 5. Consequently, it seems to be a reasonable ”starting point”

as a distribution for leptokurtic data, in particular for financial return data. In

order to obtain higher ”leptokurtic flexibility”, the λ-th convolution of a hyperbolic

secant distribution can be considered. This was discussed, for example, by Harkness

and Harkness (1968) or Jørgensen (1997). The resulting distribution is commonly

known as generalized hyperbolic secant (GHS) distribution. However, GHS offers still

no opportunity to take skewness into account.

2.2 NEF-GHS Distribution

The NEF-GHS distribution was originally introduced by Morris (1982) in the context

of natural exponential families (NEF) with specific quadratic variance functions.

Densities of natural exponential families are of the form

f(x;λ, θ) = exp{λx− ψ(λ, θ)} · ζ(x, λ). (1)

In the case of the NEF-GHS distribution, ψ(λ, θ) = −λ log(cos(θ)) and ζ(x, λ)

equals the probability density function of a generalized hyperbolic secant (GHS)

distribution. Hence, the probability density function of the NEF-GHS distribution

is given by

f(x;λ, θ) =
2λ−2

π Γ(λ)
·
∣∣∣∣Γ (

λ+ ix

2

)∣∣∣∣2︸ ︷︷ ︸
C(x)

· exp {θx+ λ log(cos(θ))} (2)



for λ > 0 and |θ| < π/2. Introducing a scale parameter δ > 0 and a location

parameter µ ∈ R, and setting β ≡ tan(θ) ∈ R, equation (2) changes to

f(x) = C

(
x− µ

δ

)
· exp

(
arctan(β) · x− µ

δ
+ λ log(cos(arctan(β)))

)
. (3)

The NEF-GHS distribution is a flexible class of distribution which allows for skew-

ness and excess kurtosis, which is infinitely divisible with existing moment-generating

function and hence, existing moments. However, the cumulative distribution func-

tion and the inverse cumulative distribution function is not available in a closed

form. These properties facilitate calculating risk measures, constructing multivari-

ate copula-based distributions (see, for example, Fischer (2003)) or valuating option

pricing models (see Fischer (2002)).

2.3 GSH distribution

Another generalization of the hyperbolic secant distribution – which is able to model

both thin and fat tails – was introduced by Vaughan (2002). This distribution family,

the so-called standard generalized secant hyperbolic (GSH) distribution with kurtosis

parameter t ∈ (−π,∞), has density

fGSH(x; t) = c1(t) ·
exp(c2(t)x)

exp(2c2(t)x) + 2a(t) exp(c2(t)x) + 1
, x ∈ R (4)

with

a(t) = cos(t), c2(t) =
√

π2−t2

3
c1(t) = sin(t)

t
· c2(t), for − π < t ≤ 0,

a(t) = cosh(t), c2(t) =
√

π2+t2

3
c1(t) = sinh(t)

t
· c2(t), for t > 0

.

The density from (4) is chosen so that X has zero mean and unit variance. The

GSH distribution includes the logistic distribution (t = 0) and the hyperbolic secant

distribution (t = −π/2) as special cases and the uniform distribution on (−
√

3,
√

3)

as limiting case for t → ∞. Vaughan (2002) derives the cumulative distribution

function, depending on the parameter t, as

FGSH(x; t) =


1 + 1

t
arccot

(
− exp(c2(t)x)+cos(t)

sin(t)

)
for t ∈ (−π, 0),

exp(πx/
√

3)

1+exp(πx/
√

3)
for t = 0,

1− 1
t
arccoth

(
exp(c2(t)x)+cosh(t)

sinh(t)

)
for t > 0.

and the inverse cumulative distribution function

F−1
GSH(u; t) =


1

c2(t)
ln

(
sin(tu)

sin(t(1−u))

)
for t ∈ (−π, 0),

√
3

π
ln

(
u

1−u

)
for t = 0,

1
c2(t)

ln
(

sinh(tu)
sinh(t(1−u))

)
for t > 0.



The moment-generating function also depends on t and is given by

MGSH(u; 0, 1, t) =


π
t
sin(ut/c2(t)) csc(uπ/c2(t)) für t ∈ (−π, 0),√
3u csc(

√
3u) für t = 0,

π
t
sinh(ut/c2(t)) csc(uπ/c2(t)) für t > 0.

Moments of X can be deduced from the last equation. Despite of its nice properties,

the GSH distributions is not able to include skewness effects.

2.4 SGSH distributions

There are plenty of methods in the literature to make a symmetric distribution skew.

As the cumulative distribution function of the GSH distribution is explicitly known,

Fischer and Vaughan (2002) decided in favour of splitting the scale parameter, as

it was done by Fernandez, Osiewalski and Steel (1995) for the skewed exponential

power distribution.

Let γ > 1, I+(x) denote the indicator function for x on R+ and I−(x) denote the

indicator function for x on R−. Then it can be easily verified that

fSGSH(x; t, γ) =
2

γ + 1
γ

{
fGSH(x/γ) · I−(x) + fGSH(γx) · I+(x)

}
=

2c1
γ + 1

γ

·
(

exp(c2x/γ) · I−(x)

exp(2c2x/γ) + 2a exp(c2x/γ) + 1
+

exp(c2γx) · I+(x)

exp(2c2γx) + 2a exp(c2γx) + 1

)
is a density function which is symmetric for γ = 1, skewed to the right for γ > 1

and skewed to the left for 0 < γ < 1. The corresponding distribution is termed as

skew generalized secant hyperbolic (SGSH) distribution in the sequel. The effect of

the skewness parameter on the density can be seen in figure 1, below.

Figure 1: Effect of the skewness parameter.



It can also be shown (see, for example, Grottke (2002), p. 21) that the cumulative

and the inverse cumulative distribution functions admits a closed form, namely

FSGSH(x; t, γ) =
2γ2

γ2 + 1
·
(
FGSH (x/γ) · I−(x) +

(
γ2 − 1 + 2FGSH(γx)

2γ2

)
· I+(x)

)
,

F−1
SGSH(x; t, γ) = γF−1

GSH

(
x · γ

2 + 1

2γ2

)
IA(x) +

1

γ
F−1

GSH

(
x · γ + 1

2
− γ − 1

2

)
IA(x),

with

IA(x) =

{
1, for x < γ2

1+γ
,

0, for x ≥ γ2

1+γ
.

and IA(x) = 1− IA(x).

In addition, the power moments of a SGHS distribution can be deduced from that

of a GHS distribution by means of

E(Xr
SGSH2

) = E+(Xr
GSH) · 2γ

γ2 + 1
·
[
(−1)rγr+1 + γ−r−1

]
, (5)

with the partial positive expectation value

E+(Xr
GSH) =

∫ ∞

0

xrfGSH(x)dx.

Note, that for even r the positive half moments E+(Xr
GSH) can be deduced from

E(Xr
GSH) by division with 2: Setting γ = 1 in (5),

E(Xr
GSH) = ((−1)r + 1) · E+(Xr

GSH).

For odd r, the formula for the half moments E+(Xr
GSH) is slightly more complicated.

The corresponding results are deduced by Fischer and Vaughan (2002).

3 Financial Application of the SGSH distribution

3.1 The data set

In order to adopt and compare estimation results for a great deal of distributions – in

particular the stable distributions (STABLE) – priority is given to the weekly returns

of the Nikkei from July 31, 1983 to April 9, 1995, with N = 608 observations. This

series was intensively investigated, for example, by Mittnik, Paolella and Rachev

(1998) because it exhibits typical stylized facts of financial return data. Figure 2

illustrates the time series of levels and corresponding log-returns.



Figure 2: Levels and returns of Nikkei.

(a) Levels (b) Returns

3.2 Unconditional fit to financial return data

Similar to Mittnik, Paolella and Rachev (1998), four criteria are employed to com-

pare the goodness-of-fit of the different candidate distributions. The first is the

log-Likelihood value (LL) obtained from the Maximum-Likelihood estimation. The

LL-value can be considered as an ”overall measure of goodness-of-fit and allows us

to judge which candidate is more likely to have generated the data”. As distribu-

tions with different numbers of parameters k are used, this is taken into account by

calculating the Akaike criterion given by

AIC = −2 · LL+
2N(k + 1)

N − k − 2
.

The third criterion is the Kolmogorov-Smirnov distance as a measure of the distance

between the estimated parametric cumulative distribution function, F̂ , and the

empirical sample distribution, Femp. It is usually defined by

K = 100 · sup
x∈R

|Femp(x)− F̂ (x)|. (6)

Finally, the Anderson-Darling statistic is calculated, which weights |Femp(x)− F̂ (x)|
by the reciprocal of the standard deviation of Femp, namely

√
F̂ (x)(1− F̂ (x)), that

is

AD0 = sup
x∈R

|Femp(x)− F̂ (x)|√
F̂ (x)(1− F̂ (x))

. (7)

Instead of just the maximum discrepancy, the second and third largest value, which

is commonly termed as AD1 and AD2, are also taken into consideration. Whereas K
emphasizes deviations around the median of the fitted distribution, AD0,AD1 and

AD2 allow discrepancies in the tails of the distribution to be appropriately weighted.



Distribution k LL AIC K AD0 AD1 AD2

NORM 2 -1428.3 2862.6 6.89 4.920 2.810 1.070

STABLE 4 -1393.2 2796.5 3.00 0.085 0.084 0.081

HS 2 -1393.4 2792.8 4.31 0.216 0.150 0.121

GHS 3 -1392.2 2794.6 4.15 0.140 0.117 0.114

NEF-GHS 4 -1388.1 2786.3 2.42 0.091 0.090 0.083

GSH 3 -1392.3 2794.8 4.17 0.142 0.117 0.114

SGSH 4 -1387.5 2785.2 2.18 0.088 0.087 0.080

LOG 2 -1398.1 2802.1 4.56 0.362 0.236 0.186

EGB2 4 -1388.1 2786.3 2.45 0.103 0.100 0.095

GH 5 -1388.0 2788.2 2.43 0.095 0.093 0.086

HYP 4 -1388.2 2786.5 2.50 0.106 0.103 0.098

NIG 4 -1388.2 2786.6 2.48 0.085 0.085 0.075

SGT2 5 -1387.4 2786.9 2.12 0.076 0.072 0.071

Student-t 3 -1392.2 2792.5 3.77 0.107 0.104 0.103

gh-NORM 4 -1388.7 2788.5 2.27 0.068 0.062 0.061

Table 1: Goodness-of-fit for the unconditional case: Nikkei225.

Estimation was performed not only for the two families of generalized hyperbolic

secant distributions (NEF-GHS and SGSH with symmetric counterparts GHS and

GSH), but also for distribution families which have become popular in finance in

the last years: Firstly, the generalized hyperbolic (GH) distributions which were

discussed by Prause (1999) and include, for example, the Normal-inverse Gaussian

(NIG) distributions (see Barndorff-Nielsen (1997)) as well as the hyperbolic (HYP)

distributions (see Eberlein and Keller (1995)) as special cases. Secondly, the expo-

nential generalized beta of the second kind (EGB2) distribution that was introduced

by McDonald (1991) as a generalization of the logistic (LOG) distribution and used

in various financial applications, see also Fischer (2002). Thirdly, a very flexible

skew version of the generalized t-distribution (SGT2) proposed by Grottke (2001).

Finally, we performed calculations for the gh-transformed normal (gh-NORM) dis-

tribution (see Klein and Fischer (2002)).

The estimation results are summarized in table 1, above and are as follows: Firstly,

let us focus on the fit of generalized hyperbolic secant families. There seems to be

no difference between the GSH distribution of Vaughan (2002) and the GHS distri-

bution of Harkness and Harkness (1968). This is not true if we consider the skewed



pendants and compare the NEF-GHS distribution of Morris (1982) with the SGSH

distribution of Fischer and Vaughan (2002) which exhibits better goodness-of-fit val-

ues with respect to all five criteria. For that reason, we restrict our considerations

to the SGHS distribution. Concerning the LL-value, only the SGT2 distribution

has a (slightly) higher value. The same is true if we compare the K-values. If we

take the number of parameters into account (i.e. focus on the AIC criterion), SGSH

even outperforms SGT2. The situation is a little bit different concerning the tail fit.

Here, gh-transformed distributions finished best, followed by SGT2, NIG, STABLE

and SGHS (Note, that the last three are close together).

3.3 Conditional fit to financial return data

Assuming independent observations – as we did it in the last subsection – is not

very realistic. To capture dependency between different log-returns, generalized au-

toregressive conditionally heteroscedastic (GARCH) models have proposed by Engle

(1982) and Bollerslev (1986) as models for financial return data. These models are

able to capture the distributional stylized facts (like thick tails or high peakedness),

on the one hand, as well as the time series stylized facts (like volatility clustering),

on the other hand. The setting for our GARCH framework is similar to Bollerslev

(1986) assuming that the log-returns Rt of financial data are given by

Θm(L)Rt = µ+ Ut

with

Ut|Ft−1 ∼ D(0, h2
t , η) or Ut|Ft−1 = htεt with εt ∼ D(0, 1, η),

where Θm(L) is a polynomial in the lag operator L of order m. For reasons of

simplicity, assume that Θm(L) ≡ 1 and µ ≡ 0. The residuals {Ut} are assumed to

follow a GARCH-D process. That means they follow a distribution1 D with shape

parameter η and time-varying variance h2
t . In the GARCH(1, 1)-Normal specification

from Bollerslev (1986) it is given by

h2
t = α0 + α1R

2
t−1 + β1h

2
t−1 = α0 + α1h

2
t−1ε

2
t−1 + β1h

2
t−1. (8)

Note, that setting β1 = 0 results in the ARCH model of Engle (1982). The estimation

results for the standard GARCH setting are summarized in table 2, below.

1Although GARCH models with conditionally normally distributed errors imply unconditionally

leptocurtic distributions, there is evidence (see, for example, Bollerslev, 1987 ) that starting with

leptocurtic and possibly skewed (conditional) distribution will achieve better results. For that

reason, alternative error distributions are used.



D k LL AIC K AD0 AD1 AD2

NORM 4 -1358.7 2727.8 4.31 505.30 0.890 0.141

STABLE 6 -1340.8 2695.8 3.76 0.253 0.092 0.093

HS 4 -1342.8 2695.6 4.54 0.427 0.126 0.125

GHS 5 -1342.3 2698.7 4.01 0.679 0.122 0.122

NEF-GHS 6 -1334.6 2683.4 2.25 0.461 0.083 0.076

GSH 5 -1341.3 2696.8 3.71 0.914 0.155 0.116

SGSH 6 1333.0 2680.2 1.98 0.504 0.069 0.068

LOG 4 -1344.0 2698.2 3.55 0.966 0.151 0.112

EGB2 6 -1335.6 2685.4 2.60 0.973 0.086 0.062

GH 7 -1331.3 2678.8 2.27 0.150 0.062 0.061

HYP 6 -1333.3 2680.9 2.21 0.834 0.079 0.063

NIG 6 -1332.5 2679.1 2.19 0.466 0.065 0.064

SGT2 7 -1331.1 2678.4 2.32 0.172 0.057 0.056

Student-t 5 -1340.3 2692.7 3.81 0.267 0.119 0.118

Table 2: Goodness-of-fit for GARCH(1,1)-models: Nikkei225.

Again, the SGSH distribution outperforms most of its competitors and even has the

lowest K-value. Concerning the LL-value, only SGT2 and GH produced slightly

higher values. They same is true for AD0.

GARCH models have been generalized in many different ways. In order to capture

leverage effects, Zakoian (1994) proposed the threshold (T)-GARCH model with

standard deviation given by

ht = α0 + α+
1 R

+
t−1 − α−1 R

−
t−1 + β1ht−1, (9)

where R+
t = max{Rt, 0} and R−t = min{Rt, 0}. Imposing a Box-Cox-transformation

on the conditional standard deviation process and the asymmetric absolute returns

leads to the asymmetric power (AP-ARCH) specification of Ding, Engle and Granger

(1993), where the variance equation is

hλ
t = α0 + α1(|Rt−1| − cRt−1)

λ + β1h
λ
t−1. (10)

Equation (10) reduces to (9) for λ = 1, α1 = α−1 /(2−α+
1 ) and c = 1−α+

1 (2−α+
1 )/α−1 .

Moreover, equation (8) is achieved for λ = 2 and c = 0.

To take also asymmetric effects into account, we end up with an AP-ARCH(1,1)-D

specification whose estimation results are summarized in table 3. Note that AP-



ARCH(1,1) estimation results for stable distribution were not available. Moreover,

∗∗ indicates convergence problems of our algorithm.

D k LL AIC K AD0 AD1 AD2

NORM 6 -1352.8 2719.8 4.28 1021.57 0.473 0.125

HS 6 -1339.7 2693.5 3.98 0.489 0.133 0.128

GHS 7 -1338.6 2695.5 3.52 1.045 0.119 0.120

NEF-GHS 8 -1333.7 2685.7 2.08 0.500 0.079 0.077

GSH 7 -1337.3 2693.0 3.31 1.093 0.117 0.115

SGSH 8 1331.8 2681.9 1.89 0.543 0.073 0.067

LOG 6 -1339.6 2693.4 3.08 1.183 0.113 0.112

EGB2 8 -1334.6 2687.5 2.46 1.011 0.078 0.077

GH 9 ** ** ** ** ** **

HYP 8 -1332.5 2683.2 2.09 0.899 0.078 0.073

NIG 8 -1331.6 2681.8 2.07 0.502 0.087 0.075

SGT2 9 -1329.8 2679.9 2.26 0.192 0.065 0.062

Student-t 7 -1336.1 2688.3 3.28 0.398 0.108 0.105

Table 3: Goodness-of-fit for AP-ARCH(1,1)-models: Nikkei225.

It can be observed that for most of the distributions the K-values improve (compared

to the GARCH(1,1)-fit) whereas the AD-values become worser. SGT2 and SGSH

seem to dominate the other distributions. Except of AD0, SGSH is close to SGT2.

Again, SGSH achieves the smallest K-value.

4 Conclusions

Two generalizations of the hyperbolic secant distribution have been proposed in the

last years which seem to be encouraging as a model for financial return data: The

NEF-GHS distribution of Morris (1982) and the SGSH distribution of Fischer and

Vaughan (2002). Both incorporate skewness and leptokurtosis. Within this work we

applied them to the weekly returns of the Japanese stock index Nikkei225. Firstly,

results of the unconditional fit (or of the GARCH(0,0)-D model) were calculated (for

a broad class of distributions D which were established as suitable return models in

the literature, and for the generalized hyperbolic secant families) as a benchmark. In

a second step, volatility cluster were taken into account by means of a GARCH(1,1)-

D model. Finally, we also tried to model leverage effects and estimated an AP-



ARCH(1,1)-D model. For the Nikkei data, we found that the skew generalized secant

hyperbolic (SGHS) distribution provides an excellent fit in all cases. It dominates the

NEF-GHS distribution as well as the EGB2 distribution. Furthermore, it approves

as flexible but numerically easier to implement as the generalized hyperbolic family.

Only SGT2 – for which neither the cumulative distribution function nor the inverse

cumulative distribution function are known – slightly outperforms SGSH.
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