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Abstract 

On the basis of real data sets it is shown that splitting a questionnaire survey 
according to technical rather than qualitative criteria can reduce costs and 
respondent burden remarkably. Household interview surveys about media and 
consuming behavior are analyzed and splitted into components. Following the matrix 
sampling approach, respondents are asked only the varying subsets of the 
components inducing missing data by design. These missing data are imputed 
afterwards to create a complete data set. In an iterative algorithm every variable with 
missing values is regressed on all other variables which either are originally complete 
or contain actual imputations. The imputation procedure itself is based on the so-
called predictive mean matching. In this contribution the validity of split and 
imputation is discussed based on the preservation of empirical distributions, bivariate 
associations, conditional associations and on regression inference. Finally, we find 
that many empirical distributions of the complete data are reproduced well in the 
imputed data sets. Concerning these long media and consumer questionnaires we 
like to conclude that nearly the same inference can be achieved by means of such a 
split design with reduced costs and minor respondent burden. 
 



1 Introduction 

Owing to price competitiveness market research institutes face the problem of 
deriving an increasing amount of information from data sources at steadily 
decreasing costs. Moreover, in view of the growing importance of multi-media market 
investigations which include many magazines, tv-viewing behavior and purchasing 
behavior, the problem of excessively long questionnaires has been arising with 
increasing frequency, along with the related problem of declining response rates and 
an increased investment of time for the respondent and the interviewers, for an early 
discussion see Tennstädt (1987). Since questionnaire based surveys are widespread 
means to gather all this information, it is hardly surprising that a variety of methods 
like split questionnaires with rotational elements have been developed to solve the 
above problem. However, these approaches usually lead to reduced sub samples of 
the original data set such that in some cases the sample size for multi-dimensional 
analyses gets very small. 

Raghunathan and Grizzle (1995) introduced a split questionnaire survey design 
where the original questionnaire is divided into several components with each 
component containing a roughly equal number of questions. The split approach is 
based on the multiple matrix sampling design which has long been used in US 
educational testing, achievement testing, and program evaluation, see Shoemaker 
(1973), Holland and Rubin (1982), or Munger and Lloyd (1988). With multiple matrix 
sampling basically there are subgroups of variables created randomly and these 
subgroups are randomly assign to subgroups of units; these random assignments 
can lead to estimation problems due to non-identification and highly reduced data 
sets for multivariate analysis. In the split questionnaire survey design, apart from a 
core component with questions that are considered to be vitally important (e.g., 
sociodemographic questions), also only a selection of the other components is 
administered to every interviewee. This clearly reduces interview time, yielding lower 
survey costs as well as reducing the respondent burden. But unlike the matrix 
sampling approaches, the missing data now are imputed to finally end up again with 
a complete(d) data set. This approach merely requires that combinations of variables 
which are to be evaluated must be jointly observed in a small sub sample (to avoid 
estimation problems due to non-identification). Thus, depending on the split design 
any desired analysis can be carried out while retaining the original sample size.  

To illustrate this Figure 1.1 shows a split questionnaire survey (SQS) design where 
interactions of second order among the split variables are assumed to be analyzed. 
In our exemplary design the questionnaire is divided into four components (plus the 
core component with questions administered to all sample individuals). 
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Figure 1.1:  Split questionnaire design with four components 



In the case of Figure 1.1 a split design with two selected and four total components 
would generate six (4 choose 2) different questionnaires.  

The general idea behind this approach is so appealing that Germany’s largest market 
research company, GfK AG, decided to apply split questionnaire designs to market-
media data bases. In a first test run two surveys are examined. The first one is a 
marketing tracking survey with about 300 individuals between 14 and 49 years being 
interviewed about recollection of commercials and advertisement in general for TV 
channels and programmes. The survey is conducted on two days a week using 
CATI. The second one is a combination of face-to-face interviews and household 
books and is conducted once a year among 4000 individuals with focus on questions 
about varying possibilities of advertising and interest in specific product categories. 
The goal of this article is to show that the split questionnaire survey design can offer 
solutions to a wide range of questionnaire based surveys which suffer either or both 
from high costs or a high respondent burden. Although based on the work of 
Raghunathan and Grizzle (with some slight modifications) our article will focus even 
more on the practitioner’s perspective. For this reason the article structure reflects 
loosely the chronological order of a conducted SQS project. More details of the 
project are described in Koller (2001) and Mäenpää (2001). 

In the next section we will cover the component structure of the questionnaire and 
also discuss the rules for the assignment of questions to components. Raghunathan 
and Grizzle (1995) state that variables with high partial correlation coefficients should 
go into different components. This sounds reasonable, because following this 
condition you avoid that variables which explain each other very well are always 
jointly missing for any observation. However, in some cases the purely data 
generated solution of the questionnaire design must be modified. We try to show how 
robust the imputation of the missing answers is to a violation of this condition. The 
third section describes the imputation algorithm we used for both surveys which is, 
unlike to Raghunathan and Grizzle (1995), not  based on Bayesianly proper multiple 
imputations (see Schafer, 1997). Due to the needs of the marketing research 
company, one imputed data set had to be produced for being passed to their 
customers. German agencies are well equipped with computerised media planning 
tools but for the time being there is no possibility to include correct multiple 
imputation inference in this planning process. 

The missing data are imputed using regression imputation and predictive mean 
matching (PPM) as introduced by Rubin (1986) and Little (1988). Section four is 
divided into two parts: After a description of the application and implementation of 
both SQS designs, some results of the imputed and analyzed data sets will be 
compared with the available case equivalents (without imputation), and, this being a 
simulation study where initially complete data sets have been “punched”, with results 
based on the complete data sets. Finally, the last section will resume some of the 
problems and pitfalls encountered and discuss possible solutions. 

 

2 Component Structure 

In the first section we have learned that all split variables should be administered to 
components such that you get high partial correlations for variables in different 
components. To fulfil this requirement we need a complete data set to generate the 
component structure. Surveys which are conducted on a regular basis with at least 
almost identical questions like panels or the considered tracking surveys are 



therefore especially suitable for SQS designs. Otherwise you have to draw a small 
sub sample (with the complete questionnaire answered) in advance in order to 
calculate the associations/correlations. The calculation of a suitable measurement of 
association can occure to be difficult, because the survey variables are often 
measured on several scales. Problems occur when the considered variables are of 
different scale, especially if one of the variables is ordinal. Hence, to simplify matters 
ordinal variables will be treated as metric and the Bravais-Pearson coefficient is used 
to calculate the correlation. The formula for the Bravais-Pearson coefficient is given 
by 
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where xi and yi are values for the ith observation of the variables x and y, x and y  
are the corresponding means and sx, sy the corresponding standard deviations, n is 
the total sample number. 

For two binary variables the Phi coefficient can be used; its formula is given by 
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where a, b, c, and d each represent one quarter of a 2×2-table with a being in the top 
left and b being in the top right cell.  

After obtaining the correlation matrix a cluster analysis can be used to generate the 
component structure. Instead of cases we cluster variables, and by using the 
correlation matrix rather than a distance matrix, those variables with low correlations 
will be put into the same cluster.  This means that variables with high correlations 
end up in different clusters. These clusters represent the questionnaire components 
and statistical standard software can be used to calculate the required number of 
clusters/components. “Average linkage within groups” minimises the average 
Euclidean distances for variables within each cluster while maximising the distances 
for variables in different clusters. If the cluster sizes tend to vary heavily (and hence 
the length of the different questionnaires), “Ward” can be used as an alternative 
distance measure. Thus, a “reversed cluster analysis” is an easy way to generate the 
required component structure. 

However, some questions are required to be in the same block or even in a specific 
order as the following example might demonstrate: Suppose you ask interviewees 
who own at least one computer (or claimed to do so), what kind of computer they 
have (“Do you own a PC?/…home computer?/…laptop?”) asking a singular question 
for each type of computer. The empirical distributions would probably change 
drastically if you leave out one of the categories or maybe even if you asked about 
home computers before you asked about PC’s, because many people would not 
distinguish between the different types, especially if one category doesn’t even occur 
at all. 



To test the robustness of the imputation to modifications in the data generated 
component structure we will use three different designs: the standard (“correct”) 
solution where the variables are clustered in the way described above, a solution 
where the assignment of questions to components is randomised and a “regular” 
cluster solution based on a distance matrix (worst case scenario) where variables 
with high correlations will be assigned to the same component. The results of the 
three designs are given in section four. 

 

3 Imputation algorithm 

Under the assumption that the missing data are missing at random (MAR) or even 
missing completely at random (MCAR), as defined by Rubin (1976, 1987) and Little 
and Rubin (1987), and that the parameters are distinct (see Schafer, 1997) the 
missing data mechanism is said to be ignorable. If these assumptions hold, it is 
possible to suitably impute the missing data by a standard multiple imputation 
technique. As the assignment of components to individuals is randomised the 
missing data mechanism can be treated to be MCAR, or, at least, MAR. However, as 
previously discussed, due to the customer’s demands we are not yet asked to 
multiply impute data sets. The production of one carefully imputed data set is the 
actual task. 

The imputation of missing values is carried out by predictive mean matching which is 
basically both regression and nearest neighbour approach. Regression imputation 
(with rounding to the nearest observed value) tends to overestimate the explained 
sum of squares yielding a higher R2 than the original data would do. In order to avoid 
this, predictive mean matching (PMM) combines regression imputation with nearest 
neighbour approaches. Instead of rounding the regression estimate to the nearest 
observed value, each case with an initially missing value scans the observed values 
to “find” the case with the closest regression estimate to its own regression estimate 
and adopts the corresponding observed value (see Figure 3.1). 

 

                 

Predictive mean matching is more likely to preserve original sample distributions than 
rounding to observed values, because outliers like the high-lighted values in Fig. 3.1 
do not necessarily change the structure of the sample. One minor drawback of PPM 
in this situation is that only “observed” rather than “possible” values can be imputed. 
However, in our surveys items usually have a very limited number of possible 
categories and therefore this problem can be safely ignored.  

For a first run (starting solution) the computer algorithm includes all variables of the 
core component to generate initial estimates for all partly missing variables. Then, all 
variables (with exception of variables within the same component) are included in the 
regression, thus transporting any combination of variables implemented in the split 

Figure 3.1:  Imputation algorithm (predictive mean matching). 

����������	�
�

��������������	�
�



design.1 This second step will be repeated until the results for the imputed values 
converge to a certain level.  

Although the algorithms does not contain a stochastic component it did not converge 
in any of the conducted test runs at a maximum number of 2000 iterations. One 
explanation might be the imputation of missing values based on outliers which might 
bias a converging process away rapidly within an iteration step (especially for binary 
variables). In order to generate one single reliable solution every tenth of a total of 
300 iterations was saved as imputation yielding M = 30 imputations.2 Figure 3.2 
shows exemplary mean estimates of a split variable based on imputations, available 
cases and complete data set. 

 

                              

Most of the mean estimates partly based on imputed values were closer to the 
complete data set estimator than the available case (AC) estimator. In order to 
identify the “best” imputation we would compare the deviations between imputation 
and complete data estimator for all considered estimators selecting the one 
imputation that yields a total minimum deviation sum of squares. However, the 
complete data estimator is, apart from the test situation, unknown, so our idea was to 
derive a chi2-based measure which yields the deviation sum of squares to the mean 
over all imputation means. Let n be the number of total sample observations and q 
denote the number of considered variables. Then xij denotes the i-th observation of a 
split variable Xj with i = 1,2,…,n and j = 1,2,…,q. The estimated mean (or proportion 

for binary variables) of the w-th imputation is given by ∑
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which shall be referred to as MI estimator, although the imputations themselves are 
not based on proper or Bayesianly proper multiple imputations (see Schafer, 1997). 
                                                        
1 A special linux based tool (programming by Rässler, 2001) is used to generate the imputed 
data sets. 
2 Notice that the whole imputation procedure as presented herein is deterministic, no random 
values are drawn at any time. 

Figure 3.2:  Histogramme for mean estimates of all 30 imputations. 

AC complete data 



In order to avoid that deviations of parameter estimates based on small sample sizes 
have a strong influence on the value of the measure a limit L is used to weigh down 
those deviations. Thus, we obtain a chi2-like measure 
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 yielding weighted deviations from the MI estimators of all considered parameter 
estimates. 

The results presented in section four are based on the imputation that yielded the 
minimum value for G(w) with L = 30.  The imputed data set so chosen was always 
either the “best” or, at least, among the “best” imputations when compared to the 
actual complete data estimates rather than the MI estimators. 

 

4 Results 

For the first survey we examined data from ten successive months with the earliest 
data being used to calculate the component structure. As mentioned earlier we 
wanted to examine possible effects of modifications within the component structure. 
The results for the three different designs described in section 2 for the average 
correlations yield 

“correctly” calculated component structure:   0.22 (within) 0.27 (between) 
random assignment to component :   0.24   0.24  
“worst case scenario”:     0.34  0.22 

Disregarding the design of the component structure, the average between- and 
within-correlations show rather small deviations. However, the “correct” component 
structure yielded a maximum average correlation within one component which was 
still smaller than the minimum average correlation between components. The rather 
small range for the  between correlations might be put down to a small “variance” of 
the correlations within this data set.  

The results based on the different designs were compared to results based on the 
complete data set. Due to the similar between-correlations it is not surprising that 
nearly no differences could be found between correct component structure results 
and those based on the random structure. However, the “worst case scenario” 
yielded significantly worse results than the correct component structure data set. 
Throughout this section all analyses of imputed data sets are based on a correctly 
calculated component structure with a 4-choose-2-design. The analyzed imputed 
data sets were selected using G(w) as introduced in the previous section. To check for 
effects due to the number of observations the data were combined to three data sets 
of different size (n = 300, n = 1000 and n = 2000) Table 4.1 provides an overview of 
the results for these data sets. 
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While marginal and bivariate distributions between split and completely observed 
variables can be reproduced for data sets with a sufficient number of observations, 
the results indicate that chi2-tests for bivariate distributions between two split 
variables yield a much higher share of significant deviations than the expected 5 
percent (for α = 0.05). One possible reason for this specific data set can be found in 
the very low correlations among the split variables variables but, of course, also in 
the lower basis of actual observations. Moreover, all regressions were carried out 
using a linear regression model disregarding the true scale of the dependent 
variable. An update version of the computer algorithm is planned that includes an 
extension to the general linear regression model which might also improve the 
imputation of bivariate distributions between split variables. 

The next table provides a comparison between estimates based on the imputed data 
set and the available case data set with a reduced number of observations. The 
intention in this case is to control for any misspecification in the underlying linear 
regression model that might lead to a systematic bias in the imputed data set 
estimates. Again, deviations to the complete data set are stated for both data sets. 

Table 4.1: Deviations between complete and imputed data sets, t-statistics (for 
testing mean differences) and Chi2-tests (for testing distributional differences) 
(α = 0.05)  for bivariate distributions between variables of the core component 
and split variables and for bivariate distributions among split variables. 
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The descriptive statistics yielded satisfying results for both data sets, with slightly 
smaller  average deviations for the imputed data set. However, the results for the t-
and Chi2-tests are only comparable to a limited extent, because they are based on 
different sample sizes. For the first two cases the tests for the AC data set are based 
on roughly half the original sample size. In the third case (bivariate distributions 
between two split variables) the sample size is reduced to one sixth of the original 
number of observations (see Fig. 1.1).  

The data set of the consumer survey we examined included 4027 observations 
where 327 observations were used to calculate the component structure. These 
cases were discarded afterwards leaving 3700 observations for the split data set. We 
summarise the results for this data set in Table 4.3. 
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Although the average deviations are small for both the marginal and the conditional 
distributions, the Chi2-statistics yielded, compared to the media survey, more 
significantly deviating distributions because of the higher total number of 
observations. This might also explain the lower share of significantly deviating 
distributions for the available case data set (approx. 1850 observations), especially 

Table 4.2: Deviations, t-statistics and Chi²-tests (α = 0.05)  for bivariate 
distributions between variables of the core component and split variables and for 
bivariate distributions among split variables for the available case and the imputed 
data set originally based on 2000 obserations. 

Table 4.3: Deviations between complete and imputed data sets, Chi2-tests (α = 
0.05)  for marginal and bivariate distributions between variables of the core 
component and split variables. 



for the conditional distributions where the average deviations are higher but the share 
of significantly deviating distributions is lower than for the imputed data set (3700 
observations). 

 

5 Conclusions 

Split questionnaire surveys have turned out to show several positive effects: They 
are especially useful for cost-cutting reasons if the interview time is taking a high 
share of the total interview costs. This is clearly the case for CATI and other 
telephone based surveys, where CATI has an additional benefit of easily 
implementing split designs into the survey. A second benefit of conducting studies 
with split questionnaire designs is the reduced respondent burden which should lead 
to less unit non-response and therefore to a better sample quality. The other way 
round, instead of reducing the respondent burden, split designs also allow to include 
more questions without increasing it. 

The results of the previous section suggest that it is possible to reduce the 
respondent burden while retaining at least marginal distributions and bivariate 
distributions of split and core component variables. Even better results are to be 
expected when proper multiple imputation methods are applied. However, the 
reduction cannot be extended indefinitely because the remaining information is also 
getting less. This may explain the worse results we found for the bivariate 
distributions between the split variables. Besides, while more components do result 
in further cost-cuttings and an even lower respondent burden, they also increase the 
complexity of the questionnaire design and reduce the sample size for every single 
questionnaire. Hence, an appropriate balance has to be found for the trade-off 
between these effects.  

Because the first survey we examined is conducted using CATI with a randomised 
order of questions, the answer behavior should not be affected by the split 
questionnaire design. However, it was beyond the scope of this project to conduct 
additional field tests where split questionnaire results are compared with the 
corresponding complete questionnaire results.  
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