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Abstract

In the literature there are several generalizations of the standard logistic
distribution. Most of them are included in the generalized logistic distribution
of type IV or EGB2 distribution. However, this four parameter family fails
in modeling skewness absolutly greater than 2 and kurtosis higher than 9. To
remove this shortcoming, an additional parameter is introduced. Unfortuna-
tely, there is now no closed form for the probability density function of the
generalized EGB2, briefly called FEGB2 or generalized logistic distribution of
type V. However, it can be approximated numerically, for example by saddle-
point approximation or numerical integration methods. Finally, FEGB2 is
used for modeling returns of financial data.

1 Introduction

The aim of this paper is to propose a generalization of the EGB2 distribution or
generalized logistic distribution of type IV. The EGB2 distribution itsself is a four
parameter generalization of the standard logistic distribution. It can be used to
model data which are skewed and leptokurtic. Section 2 gives a short review of the
EGB2 distribution including the special cases. However, only a restricted domain
of skewness and leptocurtosis can be achieved by EGB2 if skewness and kurtosis are
measured by the third and fourth standardized moments. To remove this shortco-
ming, an additional parameter, the so-called convolution parameter, is introduced
in section 3. Unfortunately, there is now no closed form for the probability den-
sity function of the generalized EGB2, briefly called FEGB2. However, it can be
approximated numerically for example by saddlepoint approximation or numerical
integration methods. This is demonstrated in section 4. Finally, the generalized
EGB?2 is applied to financial return data in section 5.



2 Generalizing the logistic distribution: A review

2.1 Generalized logistic distributions of type I, IT and III

In the literature there are several generalizations of the logistic distribution. Fol-
lowing the notation of Johnson, Kotz & Balakrishnan [16] the type I generalized
logistic distribution (GLj) is characterized by its cumulative distribution function
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Hereby, a determines the skewness of the distribution, namely GL; is negatively
skewed for 0 < a0 < 1, positively skewed for @ > 1 and symmetric for « = 1. In ad-
dition, Zelterman [30],[31] introduced a scale parameter £ and a location parameter

J.

Another generalization of the logistic distribution is given by the type II generalized
logistic distribution (GL;;) with cumulative distribution function
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It can be shown that if X ~ GLj, then —X ~ GLj;. Therefore GLj; is sometimes
also called negative GL;. Consequently the GL;; is positively skewed for 0 < a < 1
and negatively skewed for o > 1.
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Finally, Davidson [8] used the type III generalized logistic distribution (GLj;)
(which bears no relationship to GL; except the special case of the logistic distri-
bution) having symmetric probability density function

a1 exp(—f)
T =565 Trentap 770 T€F
Here B(a,b) denotes the Beta function, whose definition and main properties are
summarized in Appendix A. Obviously, setting 5 = 1 yields the standard logistic
density function. Moreover, it can be shown that GL;;; has thicker tails than
the normal distribution. George and Ojo [13] and George, El-Saidi and Singh [12]
developed an approximation to Student’s t distribution with v degrees of freedom
based on GLj77. In order to match the coefficient of kurtosis they recommend the

use of § = L2228,




2.2 The EGB2 or generalized logistic distribution of type
IV

1. Definition: It is readily observed, that GL; (setting 3; = 1, 82 = «) and GL;;;
(setting $; = [2) are included in the type IV generalized logistic distribution with
density function

1 ) exp(—fiz)
B(B1, B2) [1+ exp(—z)]prthe’

GLjy is sometimes also referred to as the exponential generalized beta of the second
kind, denoted by EGB2 (see McDonald [19]), or as z-distribution (see Barndorff-
Nielsen, Kent, Soerensen [3]). We will follow the notation of McDonald and term
this distributions as EGB2 in the sequel.

f-(x; B, B2) = reR (2.1)

There is also another definition of EGB2 (see also McDonald [19]), namely

1 . exp (i)
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by the end of this paper definition (2.2) will be used to deduce further results. The
connection between f, and f_ is stated in the following Lemma.

fi (@ B, B2) = reR (2.2)

Lemma 2.1 Let f, and f_ be defined as in (2.2) and (2.1). Then
f+(xaﬁlaﬁ2) - ff(xaﬁ%ﬁl)-
Proof:
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Finally, following Zelterman and Balakrishnan [32] (2.1) can alternatively be written
as

_t
B(b1, b)

where F™* denotes is the standard logistic cumulative distribution function.

f(x; B1, B2) = [F*(2)]P1 — F*(x)]%, z € R, (2.3)



The positive parameter 3; and (3, determine the skewness in the following manner:

B> B positively skewed
For B < B the distribution is negatively skewed
B = B symmetric

Introducing a location parameter i and a scale parameter o leads to a four parameter
family with probability density function

‘ B 1 exp(B175%)
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2. History and applications: The EGB2 appeared 1921 for the first time in the
work of Fisher [11]. Meanwhile there are plenty of applications of that distribution
family: Prentice [27] proposed type IV as an alternative for modelling binary res-
ponse data to the usual logistic model. McDonald/White [22] used it in the context
of modelling the error-distribution for regression models, McDonald and Nelson [21]
in the special case of beta estimation in the market model, McDonald/Xu [23] as
error-distribution for ARIMA models and Tiku/Wong/Bian [29] in the context of
modeling time series with asymmetric innovations.

3. Mixture representations: In the literature there exists several mixture repre-
sentations of the EGB2 distribution. Firstly, (2.4) can represented in terms of the
generalized beta of the second kind (GB2) (see McDonald [19])

fEGB2(x§N7 J, 51,52) = fGBZ(6$§ 571,6”,51,52) -e”,

where the definition of the generalized beta of the second kind distribution can be
found in appendix B. Thus, X distributed according to EGB2 implies that e is dis-
tributed as GB2, or if X is distributed as GB2, then In(X) is distributed according
to EGB2. Therefore EGB2 is also termed as the LGB2 or InGB2. Bookstaber and
McDonald [6] demonstrate the value of modeling security market returns with GB2.

Secondly, an extension of this result can be found in McDonald and Butler [20] who
show that the EGB2 can be interpreted as an exponential generalized gamma distri-

bution (EGG), which has random scale parameter whose distribution is an inverse
generalized gamma distribution (IGG) (Both definitions are stated in appendix B):

Frcma(@; 11,6, B, B) = / Froa(w: 1/6,0, 81) froa(0; 15, e, 5)do.
0

Thirdly, another similar mixture representation in terms of the generalized gamma
distribution is given by McDonald [19]:

fEGBQ(x;/% 0, 51,52) = /00 fGG(ew; 1/5,9,51) e’ fGG(HQ —1/5, 0, 52)d9-
0



4. Moment generating function, moments, skewness and kurtosis: It is
easily seen that the moment generating function of X ~ EGB2(u,d, 51, f2) is

Bi+0tpe=0t) B _ P (2.5)
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which leads to the characteristic function

it B(pBy + idt, By — i0t) _ it (B + i0t)[(By — idt)
B(bh, B2) L(81)T(B-)

From (2.5) we get (see also McDonald [19]) and appendix A for the definition of the
Psi function ):

Mx(t) = exp(put) -

p(t) = M(it) =

E(X) = 6[0(8) — $(B2)] + . (2.6)
My = Var(X) = 82 (8) + ¥/ (52)) (2.7)
My = BI(X — p)*] = 8" (81) — o (Ba)], (2.8)
My = B[(X — )] = 5"{0"(81) + 0" (8) + 316/ (B1) + ¥/ (Bo) P} (2.9)

Hence, one calculate the statistics for skewness and kurtosis

S(X) = Ms V" (Br) — " (B) ,
My®  JF B+ 0(B)

Koy = Ms B 0" (B) + 30 (B) + ()] .11

M3 [V (B1) + ¢! (Ba)]?
It can be shown that the EGB2 can accomodate skewness values between -2 und 2.
The summary of the entries in the following table reflect the role of the parameter

B1 und fy.

| Bl B—Jo001] 020 1] 2] 5[ 10] 50| 100 |
0.01 [ 0.00 | -1.97 [ -2.00 [ -2.00 [ -2.00 [ -2.00 [ -2.00 [ -2.00
0.10 | 1.97 | 0.00 [ -1.91 | -1.94 | -1.95|-1.96 | -1.96 | -1.96
1200] 1.91] 0.00[-0.581-0.92-1.03]-1.12 | -1.13
20200] 1.94] 0.58] 0.00 | -0.44 | -0.61 | -0.74 | -0.76
5200| 1.95] 092 0.44 ] 0.00 [ -0.20 | -0.41 | -0.44
10 2.00] 1.96 | 1.03| 0.61] 0.20 | 0.00 | -0.24 | -0.28
50 [ 2.00] 1.96 | 1.12 0.74| 0.41 | 0.24 | 0.00 | -0.06
100 [ 2.00 | 1.96 | 1.13] 0.76 | 0.44 | 0.28 | 0.06 | 0.00

(2.10)

Table 1: Range of skewness.

Besides, EGB2 is able to model positive kurtosis. The following table will demons-
trate the flexibility of modeling leptocurtosis, which ranges between 3 and 9.



| Bl B— 001010 1| 2] 5] 10| 50] 100 |
0.01 | 6.00 | 8.88 ] 9.00 [ 9.00 | 9.00 | 9.00 | 9.00 | 9.00
0.10 | 8.88 [ 5.92 [ 8.65 | 8.76 | 8.81 [ 8.82 | 8.83 | 8.83
1]9.00]8.65]4.20 [ 433 | 4.87[5.12 | 5.34 | 5.37
219.00 [ 8.76 | 4.33 | 3.59 | 3.69 | 3.88 | 4.12 | 4.15
51 9.00 881 |4.87]3.69]322]3.22]3.37]3.40
10 | 9.00 [ 8.82 [ 5.12 | 3.88 [ 3.22 | 3.10 | 3.15 | 3.17
50 [ 9.00 | 8.83 | 5.34 | 4.12 ] 3.37 [ 3.15 | 3.02 | 3.02
100 | 9.00 | 8.83 | 5.37 [ 4.15 | 3.40 | 3.17 | 3.02 | 3.01

Table 2: Range of kurtosis.
5. Log-density and ¢-function: In order to implement for example GARCH

models it is helpful to calculate the log-density of the EGB2 distribution. Taking
the logarithm of (2.4)

ln(f(x,u, 57 31752)) = - ln((SB(BMBZ))_'_BIIE

— (B1+52) In (1+e 5 ) (2.12)

Obviously, the density is asymptotically log-linear with asymptotics (setting for
simplicity p =0, d =1 and C' = —In{B(f1, 52)})

Al(l') =C - 521‘ and AQ(IL') =C + ﬁll'. (213)

In addition, according to the work of McDonald and White [22] the ¢-function of
the EGB2 is given by

f,(u;/"fv 57 31752) _ 52 - 516%
f(u;u757/617/82) 5(]__|_6u§;#)

U(u; py 0, B, o) = — (2.14)

ﬂl

and is bounded above by = B2 and below by —2L. The bounds are asymmetric un-

less the underlying d1str1but1on is symmetric. If the EGB2 is skewed to the right
(1 > fa), the magnitude of the bound for positive values @ is greater than for
negative values —%. Considering the symmetric case ; = Bg, Li and deMoor [17]
showed that there is strong similarity in tails and the middle part between Huber’s
y-function and the -function of EGB2.

6. Special cases and limiting cases. Farewell and Prentice [10] showed that
EGB2 goes in limit to lognormal (8; — o0), to normal (5; — 00, fs — 00) and to
Weibull (5 = 1, fy —> oo) For 5, = [, = 1 one gets the standard logistic distri-
bution, EGB2(z; 0, \ﬁ’ 2, 5) coincides with the hyperbolic cosine distribution. If X
is beta distributed with parameter 3; and f, then In(%;) ~ EGB2(x;0,1, 1, ).

The EGB2 also relates to the exponential generalized gamma (EGG) (see Cameron
and White [7]) since

EGG(z;p, 6, 51) = hm EGB2(u; o+ d1In(f), 9, b1, Ba).

2*)00



7. Self-decomposability and infinite divisibility: According to Barndorff-
Nielsen, Kent and Soerensen [3], the EGB2 allows for the following normal variance-
mean mixture representation®: Let f,,(z;d,7) be the probability density function of
a random variable X on R, which has moment generating function

= t - 1
t) = 1l 0>0 —s

k=0

i.e. fm(x;0,7) lies in the class of infinite convolution of exponential distribution
(Pélya distributions), then EGB2 is a normal variance-mean mixture with mixing
distribution f,,. It was noted above that f,, is a infinite convolution of exponential
distributions and hence belongs to the Thorin class for every (d,7). Results of
Halgreen [15] and Thorin [28] imply that EGB2 belongs to the extended Thorin class
(or class of generalized Gamma convolutions) and is therefore self-decomposable and
hence infinitely divisible. Alternatively, Bondesson [5] proved directly that that the
log-Gamma distribution and hence EGB2 belong to the extended Thorin class.

!Suppose X is a random variate which is (for a given u) Gauss distributed with mean u + Su
and variance u. Suppose moreover that u itsself follows a cumulative probability function F on
Ry . Then the distribution of X is said to be a normal variance-mean mixture with mixing
distribution F. If 5 = 0 it is termed a normal variance mixture.

7



3 The folded EGB2 distribution (FEGB2)

1. Motivation: As we have seen in the previous section the EGB2 fails in mo-
deling skewness higher than 2 or less than -2 and kurtosis higher than 9. In order
to remove that shortcoming, let us introduce an additional parameter 7 > 0. In
the following discussion we will concentrate for simplicity on the standard EGB2
distribution with 4 =0 and § = 1.

2. Definition: Let ppgpo denote the characteristic function of an EGB2-distributed
random variable X. As X is infinitely divisible, pggp2 to the power of 7 (7 > 0)

(vEaB2(t))" = <B(51 +it, By — it))T B <F(61 +it)[(B2 — it)>T
2 —_— prm—

B(p1, Ba) L(B1)1(B2)
is again a characteristic function (see Lukacs [18]). The corresponding random

variable X is said to be FEGB2-distributed or generalized logistic of type V with
parameters (31, 32 and the so-called convolution parameter 7.

(3.15)

3. Moments, skewness and kurtosis:

Lemma 3.1 Let X ~ FEGB2(py, 32, 7) and M(u) denote the corresponding mo-
ment generating function. Define further P(u) = 7[¢ (51 +u) — (B2 — u)], where ¢
denotes again the Digamma function (see Appendiz A for definition). Then

M'(u) = M(u) - P(u). (3.16)

Proof: As stated above, the moment generating function of X is given by

o= (g )

Calculating the first derivative yields
o _ (BB +u,B— u))” <F'(51 +u)l(Be — u) = D(Bi + w)I" (B — u))
Ml = ( B(51, ) NENNES

B +ufr—uw)\" (T'(Bit+w) T'(B—u)\ _ u) - Pu
( B(y, B2) ) T<F(51+u) F(ﬁz—u)) = M(u)-Pu). O

Proposition 3.1 (Moments) Let X ~ FEGB2(0y, 52, 7) and M; = E(X —m)’
with m = E(X). Then

m = E(X) =7 ((81) — ¢(b2)), (

My =Var(X) =7 ('(81) +¢'(B2)) , (3.
(
(

&
—_
O

Ms=1-("(51) —¥"(Ba)),
My =1 [("(Br) + " (B2)) + 37 - (W' (Br) + ' (B2))?] -

—_
oo
~—  ~— = =



Proof: According to Lemma 2.1 E(X) = M'(0) = 7 (¢(51) — ¥(B:2)). Before
proofing the other results, it is useful to calculate the first three derivatives of P(u),
which are given by

P'(u) = 7(4' (B + u) + 4" (B2 — u)), (3.21)

P (u) = 7" (B +u) — " (B2 — u)), (3.22)

P (u) = 7" (B1 +u) + " (B2 — u)). (3.23)
Furthermore,

M) = M'(u)-P(u) + M(u) - P'(u) = M(u) - P(u)* + M(u) - P'(u)
= M(u)- (P(w)* +P'(u).

Thus, one can calculate the variance of X by

Var(X) = M"(0) = M'(0)*> =7 - (¢ (B1) + ¢'(B2)) -
A further derivative calculation yields

M"(u) = M(u)- (Pu)*+ P (u) + M) 2Pw)P (u) + P"(u))

= M(u)(P(u)? + 3P (u)P(u) + P"(u)).

Using the relationship between moments and centered moments,

E(X — p)* = M"(0) — 3M"(0)M'(0) + 2M'(0)* = P"(0).
Finally,

M"(w) = M'(u)(P(u)’ + 3P (u)P(u) + P"(u)) +

M(u) (3P (w)*P' (u) + 3P" (u)P(u) + 3P'(u)* + P" (u))

= M(u)(P(uw)* + 3P (u)P(u)* + Pu)P"(u)) +
(u
)

M(u)(3 ( )>P'(u) + 3P" (u)P(u) + 3P'(u)? + P" (u))
= M(u) {P(u)* + 6P(u)’P'(u) + 4P (u)P" (u) + 3P (u)* + P" (u) } .

Applying again relations between moments and centered moments,

E(X —p)* = M"(0) = 4M"(0)M'(0) +6M"(0)M'(0)* — 3M'(0)*
= 3P'(0)>+P"(0). O

Corollary 3.1 (Skewness and kurtosis) Let X be distributed according to
FEGB2(By, By, 7) and M; = E(X —m)'. Then the skewness and the kurtosis of X
are given by

sixy= M _ 1 (B 0B

(M)~ VT S B) + 0 (Ba)

My (W(B) +¢"(Be) +3T(¥(By) + ¢ (Be))?
(My)? T (W) +'(B2)” .
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As we can see in Table 3 — 6 smaller values of 7 than 1 allow for skewer and more
leptokurtic distributions, whereas higher values of 7 than 1 allow for less skew and
leptokurtic distributions. In the light of this context it makes sense to restrict 7 to
the interval (0, 1].

| Bl p—]001] 010 1] 2] 5] 10] 50| 100 |
0.01 0]-2.78]-2.83]-2.83]-2.83]-2.83[-2.83 | -2.83
0.10 || 2.78 0] -2.7]-2.741-276 | -2.77 | -2.77 | -2.77
1]283] 27 0]-0.82]-1.31|-1.46[-1.58| -1.6
21283] 2.74 | 0.82 0]-0.62]-0.86 |-1.05 | -1.08
5283 276 | 1.31] 0.62 0] -0.29 | -0.58 | -0.62
10283 2.77] 1.46| 0.86] 0.29 0]-0.34| -0.4
50 [ 2.83] 2.77| 1.58] 1.05| 0.58 | 0.34 0| -0.08
100 || 2.83 | 277 1.6] 1.08] 0.62| 0.4] 0.08 0
Table 3: Range of skewness for 7 = 0.5.
| Bl Bo—Jo001] 010] 1] 2[ 5[ 10] 50| 100 |
0.01 0]-1.611]-1.63]-1.63]-1.63-1.63]-1.63]-1.63
0.10 || 1.61 0]-156-158]-1.59] -16| -1.6| -1.6
1]1.63] 1.56 0]-0.47]-0.75 | -0.84 | -0.91 | -0.92
2| 1.63 ] 1.58 | 0.47 0| -0.36 | -0.49 | -0.61 | -0.62
501.63] 1.59| 0.75| 0.36 0]-0.17 [ -0.33 | -0.36
10]1.63] 16| 0.84| 0.49] 0.17 0] -0.2-0.23
50 1.63] 1.6 091 0.61] 033] 0.2 0]-0.05
100 | 1.63] 1.6] 092] 0.62] 0.36| 0.23 ] 0.05 0
Table 4: Range of skewness for 7 = 1.5.
| Bl Bo— | 0.01] 0.10 ] 1] 2 | 5] 10| 50[ 100 |
0.01 9] 14.76 | 14.99 | 14.99 15 15 15 15
0.10 || 14.76 | 8.83 | 14.3 | 14.52 | 14.61 | 14.64 | 14.66 | 14.66
11499 143 54| 567| 6.74| 724 7.68| 7.74
21 14.99 | 1452 | 567 | 4.19| 4.37| 476 | 523| 5.3
5 15 [ 14.61 | 6.74| 437] 344| 345| 3.74| 38
10 151464 | 724 476 ] 345| 321 33| 3.35
50 151466 | 7.68| 523 3.74| 3.3| 3.04| 3.04
100 151466 | 7.74| 53| 38| 335| 3.04| 3.02

Table 5: Range of kurtosis for 7 = 0.5.
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| Bl B— 001010 1| 2] 5] 10| 50] 100 |

0.01 5 |6.92 7 7 7 7 7 7
011692494 |6.77|6.84|6.87|6.88|6.89|6.89
1 71677 3.8(3.89 425|441 | 4.56 | 4.58

2 716841389 | 34346 3.59|3.74|3.77

5 71687425346 | 3.15 | 3.15 | 3.25 | 3.27
10 716881441359 |3.15]3.07| 3.1|3.12
20 716891456 |3.74|325| 3.1|3.01]3.01
100 716.89 458 |3.77|3.27 | 3.12 | 3.01 | 3.01

Table 6: Range of kurtosis for 7 = 1.5.

4 Approximations of the FEGB2 density

1. Introduction: Unfortunately, there is no closed form for the density of the
FEGB2 distribution, except the case of 7 = 1, where it coincides with the EGB2
distribution. Therefore numerical calculations of the probability density function
are necessary which are based on the well-known Fourier-Inversion formula.

2. Saddlepoint approximation: The following procedure is due to the article of
Goutis and Casella [14]. Let us first recall that for a probability density function
f(z), the moment generating function is defined as

Mo = [ e
provided that the integral is absolutely integrable. Conversely, one can obtain f(x)
from M (t) by means of the inversion formula (see for example Lukacs [18], page
84):

1 [ , | Y
flo) =5 /OO M(iu)e™ du = 5 N =iz gy,
where ¢(u) = M(iu) denotes the characteristic function and IC(u) = log(M(u)) the
cumulant generating function (cgf). Substituting ui by ¢ and using the closed curve
theorem from complex analysis we get for ( close to zero

1 oo K(t)—tx 1 oo K(t)—tx
e e

—1%00 (—1i00

Expanding the exponent in equation (4.24) around the point t* = ¢*(z) which maxi-

mizes the equation k(¢,z) = K(t) —tx, i.e. is a solution of the saddlepoint equation
K'(t) = z, yields

K(t) -t ~ K(#) — t'2 + L;*)QIC”(#).

11



Plugging this approximation in equation (4.24), integrating with respect to t along
the line parallel to the imginary axis through the point ¢* finally yields

_exp(K(t") —t'z)
N )

Applying the saddlepoint approximation formula (4.25) to the FEGB2 distribution
leads to the following result:

= f(x). (4.25)

Proposition 4.1 (Approximation formula for FEGB2) Let X be distributed
according to FEGB2(3y, B, 7), M(u) denote the corresponding moment generating
function and P(u) = 7[(B1 +u) — (B2 — u)]. Then

K(u)=7[InT(B +u)+Inl(Fy —u) — InT(F) — InT(Bs)], (4.26)
K'(u) = P(u). (4.27)

Therefore, the density of X can be approrimated by

f($) ~ eXP(T{ln F(ﬁl + u*) +In F(ﬁ2 — U*) —1In F(ﬁl) _ lnF(BZ)} _ u*x)
21P! (u*)

(4.28)
ith u* = u*(x) = K(u) — .

with uv* = u*(x) —ﬂﬁri%}iﬁz{ (u) — ux}

Proof: (4.26) follows immediately from (3.15). Further

M(w) _ M(u)P(u)
M) M)

K'(u) = (InM(u)) = =P(u). O

In order to improve the density approximation it is often useful to renormalize the
above formula (see for example Ordnung [25]): As the integral over f isn’t equal to
one, it sometimes turns out to be useful to renormalize the original approximation
values by the renormalization contant

cz[iﬂ@m.

3. Bohman’s approximation: In order to evaluate the integral leading from
the characteristic function to the corresponding cumulative distribution function
Bohman [4] proposes 5 different methods. The simplest one is given by

N-1

1 v 9 .
F(ZL‘) ~ 5 + _l' _ Z 90( ) .efzﬁnw,

2min
n=1—N,n0

where N denotes a positive integer and ¥ a positive quantity. Consequently, diffe-
rentiation with respect to x yields an approximation formula for the corresponding
probability density function:

N-1

f(z) ~ - + Z —or e )

n=1—N,n#0

12



4. Numerical results: Setting 7 = 1 leads to standard EGB2, for which the
probability density function is explicitly known. A numerical demonstration of
both approximation methods is given in Figure 1 and Figure 2 which show plots
of the exact probability density function (EXACT), the saddlepoint approximation
(SAP), the renormalized saddlepoint approximation (SAPR) and the Bohman ap-
proximation (BOH) for 4 = 0, 6 = 1, f; = 1, S = 3 and the corresponding
differences. Even though the renormalized saddlepoint approximation comes close
to the FEGB-density, the Bohman approximation (N = 10000, # = 0.03) obtains a
multiple accuracy.

Saddlepoint-Approximation FEGB2(x,0,1,1,3,1)

na
Y

\
o

)
0
™,
™,
7
v

oms
™,

, —— EXACT.SAFP
,/. ‘\\. | EXACT-SAFR

Hix-alx)
N,

0005

Figure 1: Saddlepoint approximation.
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Figure 2: Bohman approximation.
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5 Application to finance: Modeling the returns of
Nikkei and Mobilcom AG

1. Data: Let us first focus on the weekly returns of the Nikkei 225 from July
31, 1983 to April 9, 1995, with N = 608 observations (see Figure 4). This series
exhibits typical behaviour of financial return data, that is a considerable kurtosis, to
some extend skewness and the presence of volatility cluster (see Figure 3). Results
of estimations for various conditional and unconditional distribution models can be
found in the work of Mittnik, Paolella and Rachev [24] and be used for comparisons.

Nikkei 225 (Levels)
31.07.83 - 09.04.95

Nikkei
10000 15000 20000 25000 30000 35000 40000
1

_ {J‘ \ JJ'V‘\I MM/“"‘W
(
/ﬂ\f L \
.";N’J
. v
o
T T T T T T T
0 100 200 300 400 500 600
t
Figure 3: Levels of Nikkei Index.
Mikkei (Returns) Mikkei (Kernel density estimation)
31.07.83 - 09.04.95 31.07.83 - 09.04.95
- f\\
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Figure 4: Returns and density estimation of Nikkei Index.

Secondly, let’s consider the daily returns of the Neuer Markt participant Mobilcom
AG from March 10, 1997 to February 22, 2000, with N = 743 observations. Again
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the levels, returns and density estimation of that series are given in Figure 5 and
Figure 6.

Mobilcom AG (Levels)
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Figure 5: Levels of Mobilcom AG.
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Figure 6: Returns and density estimation of Mobilcom AG.

Ultimately, Table 5 summarizes some statistical properties of the two series (The
skewness and kurtosis is measured by the third and fourth standardized moments).

‘ Data ‘ Skewness ‘ Kurtosis ‘

Nikkei -0.4528 6.16
Mobilcom 1.0848 9.73

Table 5: Skewness and kurtosis.
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2. Numerical results of the estimation: Let us start by considering the Nik-
kei225 data. The Log-Likelihoods (LL) for all members of the logistic family are
remarkable higher than those of the normal distribution (see Table 6). However,
the additional likelihood increment from EGB2 to FEGB2 is not very remarkable.
Obviously, in the case of the Nikkei returns which show kurtosis clearly smaller
than nine - i.e. within the range of flexibility of the EGB2 distribution- the ad-
ditional parameter 7 provides no improvement worth mentioning. Calculating the
Akaike-Kriterium AICC = —2LL + 224D aven advises to prefer EGB2.

T—k-2
| Distrib] w | ¢ | /A | B | 1t | LL | AICC |
Logistic | 0.1806 | 1.3276 | 1.0000 | 1.0000 | 1.0000 | -1398.05 | 2802.14
G L | 0.2495 | 0.5553 | 0.3325 | 0.3325 | 1.0000 | -1392.76 | 2793.59
EGB2 | 0.6821 | 0.4525 | 0.2304 | 0.3178 | 1.0000 | -1388.11 | 2786.32
FEGB2 | 0.6594 | 0.7246 | 0.3383 | 0.4718 | 0.7995 | -1388.07 | 2788.28
| Disttib] p | o | | | | LL | |
| Normal | 0.0958 | 2.5349 | | | | -1428.26 | |

Table 6: ML-Estimation parameters for the Nikkei returns.

In order to check the goodness of fit it is useful to calculate some selected distances
between the empirical data and the estimated distribution, especially Kolmogorov
distance K, the Anderson-Darling distances ADy, AD; and AD,. The distances
corresponding to the distributions above are shown in Table 7:

‘ Distribution‘ K ‘ AD, ‘ AD, ‘ AD, ‘
Logistic | 4.56 | 0.362 [ 0.236 | 0.186
GLypp [4.35[0.174 [ 0.122 ] 0.121
GLv(EGB2) | 2.45]0.103 [ 0.100 |  0.095
GLy(FEGB2) | 2.420.095 | 0.093 |  0.086

| Normal | 6.90 | 4.97 | 2.83 | 1.08 |

Table 7: Goodness of fit for the Nikkei returns.

The same as stated above goes for the IC, ADy, AD; and AD, values: All distances
are smaller in the case of FEGB2, however the decrease being not really mentionable.

Take now the other time series: First of all, the parameters of the ML-estimation

of the returns of Mobilcom and the corresponding log-Likelihoods are given in Table
8. Again there is an increase of Log-Likelihood after the introduction of an additional
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parameter 7.

| Distrib| o | 6 | B | B | T LL | AICC |
Logistic | 0.2637 | 2.4704 | 1.0000 | 1.0000 | 1.0000 | -2171.73 | 4349.49
GLyrp | 0.1123 | 0.0501 | 0.0149 | 0.0149 | 1.0000 | -2158.39 | 4324.83
EGB2 | -0.3820 | 0.4865 | 0.1700 | 0.1321 | 1.0000 | -2154.35 | 4318.77
FEGB2 | -0.3809 | 5.0000 | 1.2095 | 0.8310 | 0.2726 | -2153.22 | 4318.54

| Distrib] u [ o ] | | | LL | |
| Normal | 0.4622 | 4.8739 | | | | -2228.11 | |

Table 8: ML-Estimation parameters for the Mobilcom returns.

Next, the associated distance measures are listed in Table 9. Regarding the results
for the returns of Mobilcom, the improvement is now obvious. Moreover AICC for
FEGB2 is now smaller than that of EGB2.

| Distribution | K | ADy | AD, | AD, |
Logistic | 3.92 | 0.821 | 0.579 0.277
GLir; [ 235 ] 0.222 | 0.144 0.116

GLrv(EGB2) | 2.33 | 0.196 | 0.189 0.069
GLy(FEGB2) | 2.17 | 0.088 | 0.081 0.046

| Normal | 8.17 | 2644.1 [ 103.82 [ 087 |

Table 9: Goodness of fit for the Mobilcom returns.

Across nested models, likelihood ratio tests are suitable to indicate significant dif-
ferences. For instance, comparing GLy and GLpy for the Mobilcom data, A =
—2(—2154.35 — (—2153.22)) = 2.26. The critical value for o = 0.05 yields 3.841,
such that Hy: 7 =1 can not be rejected. However, it is highly probable (and gives
rise to additional empirical research) that the additional parameter is significant if
the underlying data show kurtosis clearly higher than 9.

At last, the fit of the logistic family to both series is shown graphically in Figure 7
and 8. The approximation of FEGB2 was done by Bohman’s proposal.

6 Conclusions

As we have seen in the previous pages the introduction of an additional parameter
for the EGB2 or generalized logistic function of type V permits the modeling of
highly leptokurtic data. Even in the case of "medium” leptocurtosis (that means
kurtosis between 3 and 9) there is a slight improvement of fit measured by K, AD,,
AD;, AD, and the corresponding Log-Likelihoods. However, the probability density
function of the generalized logistic function of type V is not explicitly known. This

causes an additional numerical effort which can be reduced considerably by means
of FFT methods.
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A Beta and Gamma functions

Following Abramowitz and Stegun [2], the Beta function for z,y € C with R(x) > 0
and R(y) > 0 is defined by the integral

1 w/2
B(a,y) = / 11— ) = 2 / (sin )27 (cos £) 2~ dt. (1.29)
0 0

Alternatively, it can be represented in terms of the Gamma function as

B(x,y)zr(x)r(y)) with T(z) = /0 ety (1.30)

I'(z+vy

Often the derivatives of the logarithm of the Gamma function are very useful, na-

mely Digamma function or Psi function ¢(z) = dn@) — '@ 4nd the Polygamma

de T T(z)
functions ™ (x) = %&E) = d(f:njl In(T'(x)).

B Mixing distributions

The generalized gamma distribution (GG) can be defined in terms of the probability
density function

Il (z\78-1 T
fGG(x;v,a,ﬁ):{ iy (97 o (Z(G)), 020 (231)

[t was generalized by the generalized beta of the second kind (GB2) with probability
density function

|| (%)a/@l—l (1 + (%)a)_(ﬁl'i'ﬁ?) . Z 0

z;, 0, By, P2) = IB(B1B2) . 2.32
fama( B, B2) { 0. <0 (2.32)

Besides the inverse generalized gamma distribution (IGG) is defined by the proba-
bility density function

(g)7ﬁ+1
x

eXp (_ (%)7) , 220 (2.33)
0, z <0

fIGG(x;/Ya 67 5) = fGG’(x; -, 57 B) - { A C)

and, using the method of univariate variate transformation, the exponential genera-
lized gamma distribution (EGG) with probability density function

ol AN
fraa(x;v,9,8) = WF(B) exp (xfyﬁ — <F> > , r€eR (2.34)
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