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Abstract

With the celebrated model of Black and Scholes in 1973 the development
of modern option pricing models started. One of the assumptions of the Black
and Scholes model is that the risky asset evolves according to the geometric
brownian motion which implies normal distributed returns. As empirical in-
vestigations show, the stock returns do not follow a normal distribution, but
are leptokurtic and to some extend skewed. The following paper proposes the
so-called Esscher-EGB2 option pricing model, where the price process is mo-
deled by an exponential EGB2-Lévy motion, implying that the returns follow
an EGB2 distribution and the equivalent martingale measure is given by the
Esscher transformation.

1 Preface

The aim of this paper is to provide a more realistic option pricing model than
that of Black and Scholes (1973). In the model of Black and Scholes the price
process of the underlying stock is modeled by a geometric brownian motion and
the equivalent martingale measure is obtained by Girsanov transformation. This
implies that the prices of the financial data follow a log-normal distribution or in
other words the corresponding returns follow a normal distribution. As various
empirical investigations show, however, the returns are not normal distributed, but
leptokurtic and to some extend skewed. Section 2 gives a brief description of suitable
empirical methods such as the Tj-plot of Gosh (1996) to detect non-normality in
financial return data.

Section 3 reviews the definition and some important properties of the so-called
generalized logistic distribution of type IV or EGB2 distribution which was alrea-
dy proposed by McDonald (1991) for the description of financial data. This four-
parameter distribution is able to model the leptocurtosis and skewness and can be
seen as a potential alternative to the hyperbolic distributions or generalized hy-
perbolic distributions which were suggested by Eberlein et. al. (1995) and Prause
(1999), respectively. In contrast to the generalized hyperbolic family, the normali-
zing constant of the EGB2 density is not determined by the modified Bessel function,



but by the Beta function. Estimations could be numerically better tractable in that
case.

Finally, in section 4 the EGB2 distribution is used for pricing European options.
In order to obtain EGB2-distributed returns one has to choose a more general price
process, namely the so-called exponential Lévy processes. So as to arrive at the
equivalent martingale measure in this case Gerber and Shiu (1994) picked up the
Esscher transformation and applied it to stochastic processes. With the help of
Esscher transformation risk-neutral martingale densities could be obtained and used
to numerical calculation of option prices. An improvement of speed provides the
application of Fast Fourier Transform (FFT). As an alternative to FFT methods
we apply the saddlepoint approximation of Rogers and Zane (1999) to the EGB2
option pricing model. This provides a useful tool to compute the probability density
function or tail probability by Fourier inversion formula by an expansion of the
convex cumulant-generating function at the saddlepoint.

2 Financial return data and normal distribution

Some of the assumptions of the Black and Scholes model are rather debatable. Take
for example the compound returns of financial data that means the differences of the
logarithms of the prices: To illustrate the non-normality of the these returns let’s
first consider two graphical tools applied to Deutsche Telekom AG and Mobilcom
AG! (The levels and the correponding returns of both stocks are visualized in Figure
1), namely the QQ-plot and the T3-plot of Gosh [10] .

At first, let’s focus on the quantile-quantile-plots (QQ-plots) of both shares which
are shown in Figure 2. The deviation from a straight line and thus from normality
is obvious. It is also evident that there is a considerable mass around the origin and
in the tails which can not sufficiently be covered by a normal distribution. Secondly,
consider the T3-plot for Mobilcom AG and Deutsche Telekom AG (Figure 2). Here
the third derivative (T3) of the logarithm of the empirical moment-generating func-
tion is proposed as an alternative display. A significant deviation of the T3-function
from the horizontal zero line indicates non-normality; its behaviour in the neighbou-
rhood of 0 indicates the type of departure. The T3-plot of Mobilcom AG exhibits for
example a remarkable skewness and leptocurtosis in the data, whereas the T3-plot
of Deutsche Telekom AG points to the presence of high kurtosis.

Of course, one could also test the assumption of normality with popular test
procedures as there are the x? test or the well-known test of Jarque/Bera [13].
These test procedures provide the same results as the graphical tools do.

Mobilcom AG is one of the first participants of the Neuer Markt and shows most of the
stylized facts. In contrast to Mobilcom AG, Deutsche Telekom AG is part of the German stock
index DAX30. It is also a telecommunication which exhibits moderate behaviour.
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3 The EGB2 distribution - A review

1. Definition: In the literature there are several generalizations of the logistic
distribution. Following the notation of Johnson, Kotz & Balakrishnan [14] three of
them are given by the generalized logistic distributions of type I, IT and III, briefly
denoted by GL;, GL;; and GL;;; (For a description see Fischer [8]). It is readily
observed, that GL; (setting 51 = 1, 5> = «) and GL;;; (setting 5, = () are included
in the type IV generalized logistic distribution (GLpy) with density function

1 exp(fix)
x; By, = : , T€eR 3.1
f( 51 62) B(BI;BZ) [1 + exp(x)]f31+f32 ( )
The GLjy is sometimes referred to as the exponential generalized beta of the second
kind, denoted by EGB2 (McDonald [18]), or as z-distribution (Barndorff-Nielsen,
Kent, Soerensen [2]). We will follow the notation of McDonald and term this distri-

bution as EGB2 in the sequel.

Introducing a location parameter i and a scale parameter ¢ leads to a four parameter
family with probability density function

1 exp(f1=E)
f@;p, 6, Br, Ba) = BE A +exp(ij)]m+ﬂ2, zeR (3.2)

The positive parameters 3; and [, determine the skewness in the following way:

B> B positively skewed
For b1 < B the distribution is negatively skewed
B = B symmetric

Besides we can state the following result for g; and [s:
Lemma 3.1 3, and By are scale- and location-invariant parameters of the EGB2.

Proof: Let X be EGB2-distributed with parameter vector 8 = (u, 4, 51, B2). It is
then easily to show that the distribution of the linear transform Y = dX + m is
again EGB2 with parameter vector 0* = (u*, 6%, 87, B3)=(m + pd, d|d|, f1, ) O

2. Special cases: Farewell and Prentice [7] showed that EGB2 goes in limit to lo-
gnormal (; — 00), to normal (5 — 00, B2 — 00) and to Weibull (51 = 1, 52 — 00).
For 31 = B> = 1 one gets standard logistic distribution, EGB2(z; 0, \/%, %, %) coin-
cides with the hyperbolic cosine distribution. Finally, if X is beta distributed with

parameter 3; and [y then ln(%) ~ FEGB2(z;0,1, 81, B2).

3. Moment-generating function, moments, skewness and kurtosis: It can
be shown that the moment-generating function of X is given by

B(i+0t,5,=0t) B _ B (3.3)

MX(t) = exp(lu’t) ’ B(ﬁl BZ) ) 5 5’




which leads to the characteristic function

_ N pit B(py + idt, By — idt) _ (B + i6t)T(By — idt)
px(t) = M =e B(B1, B2) TBOT(B)

From (3.3) we get (see also McDonald [18])

E(X) = 0[(B1) — v (B2)] + n, (3.4)
My = Var(X) = 6°[/(B1) + ¢'(Ba)]. (3.5)
Mz = E[(X — p)*] = 8°[¢"(B1) — ¢"(Ba)], (3.6)
My = E[(X — p)*] = a"{¢" (B1) + ¢ (B2) + 3[¢'(B1) + ' (B2)]P}- (3.7)

Hence, one calculate coefficients for skewness and kurtosis measured by the third
and fourth standardized moments:

M; Y'(B1) — 9" (B2)

S(X) = —2 = n 3.8

7 VOB + () .
My _ (B + 0" (B) + 31 (B) + v (B

K=z (B + (B | (3.9

It can be shown that the EGB2 can accomodate skewness values between -2 und 2
and positive excess kurtosis up to 6. If the data show clearly higher leptokurtosis
it is advisable to use a generalized version of the EGB2, the so-called FEGB2 (see
Fischer [8]). The introduction of an additional parameter allows to rebuild arbitrary
skewness or leptocurtosis.

4. Self-decomposability and infinite divisibility: Following Barndorff-Nielsen,
Kent and Soerensen [2], the EGB2 allows the following normal variance-mean mix-
ture representation?: Let f,,(x;d,7) be a probability density function of a random
variable X on R, which has moment generating function

t - 1
=11 +—5— §>0 — 62

k=0

i.e. fm(x;0,7) lies in the class of infinite convolution of exponential distribution
(Pélya distributions), then EGB2 is a normal variance-mean mixture with mixing
distribution f,,,. As f,, is a infinite convolution of exponential distributions it belongs
to the Thorin class for every (d,7). Results of Halgreen [11] and Thorin [21] imply
that EGB2 belongs to the extended Thorin class (or class of generalized Gamma
convolutions) and are therefore self-decomposable and hence infinitely divisible.

2Suppose X is a random variate which is Gauss distributed with mean p + fu and variance u.
Suppose moreover that u itsself follows a probability function F on R;.. Then the distribution of
X is said to be a normal variance-mean mixture with mixing distribution F. If 5 = 0 it is
termed a normal variance mixture.
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Therefore the corresponding Log-Likelihood function can be represented as

Br

logL(.) = —n log(6 B(B1, f2)) + 5

(fv-

n

=1

The first partial derivatives of the Log-Likelihood function are given by
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6. Numerical results of the estimation: Let us first consider some statistical
properties of the percental returns for the selected data (skewness and kurtosis
have been measured by the third and fourth standardized moments). Obviously,
both shares exhibit leptocurtosis. Whereas Deutsche Telekom returns do not show
remarkable skewness, the returns of Mobilcom do.

‘ Data ‘ n ‘ Mean ‘ Std.Dev. ‘ Skewness ‘ Kurtosis ‘
Mobilcom AG 77 0.371 4.865 0.921 9.219
Deutsche Telekom AG | 952 0.097 2.749 -0.018 4.659

Table 1: Statistical Properties of Returns.

Fitting EGB2 and normal distributions to the empirical returns via Maximum-
Likelihood method yields:

‘ EGB2 ‘ n ‘ 1 ‘ d ‘ Jost ‘ Ba ‘ Log-Like ‘
Mobilcom AG 877 | -0.3948 | 0.3838 | 0.1318 0.1048 -2540.39
Deutsche Telekom AG | 952 | 0.1207 | 0.7221 | 0.3950 0.3995 -2281.29

‘ Normal ‘ n ‘ 7 ‘ o ‘ ‘ ‘ Log-Like ‘
Mobilcom AG 877 | 0.3707 | 4.8622 -2628.37
Deutsche Telekom AG | 952 | 0.097 | 2.7478 -2310.68

Table 2: Parameter estimations for EGB2 and Normal distribution.

7

Figure 3 shows a graphical comparison between the normal approximation and the
EGB2 approximation for the Mobilcom data. Obviously, EGB2 distributions are
suitable to rebuild high peakedness and heavier tails much better than normal dis-
tribution do. Finally, Figure 5 and 6 provide the corresponding qq-plots. In case of
EGB2 the empirical qq-curves come closer to straight lines which indicate a perfect



fit.

As a measure for goodness of fit several distances between the estimated cumula-
tive distribution function F,,; and the empirical cumulative distribution function
F,,,, have been calculated for both stocks, namely the Kolmogorov distance K and
Anderson & Darling statistics ADy, AD;, AD;:

K= su}g | Fomp(2) — Fea(2)], (3.10)
TE

Fem _Fes
4D, — sup Lemp(®) — Feu ()

ver \/Fogt(2)(1 — Fog) (8:11)

Instead of just the maximum discrepancy, it is also meaningful to look at the second
and the third largest value, which are denoted as AD; and AD,. The results are
the following:

| Share | Distr | K| ADy| AD,| AD, |
Mobilcom AG | EGB2 | 2.2296 | 0.2023 | 0.1804 | 0.0652
Norm | 8.1083 | 2259.3 | 97.591 | 0.7849

Telekom AG EGB2 | 1.8806 | 0.0503 | 0.0472 | 0.0466
Norm | 4.7735 | 0.7243 | 0.6720 | 0.6132

Table 3: Goodness of fit.

Obviously, the fit of the EGB2 distribution is again much better than that of the

normal distribution. All distance measures indicate remarkable improvements by
using EGB2.
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7. Rescaling of EGB2: When fitting a normal distibution only a scale parameter
o and a location parameter ; has to be estimated. In the case of EGB2 distribution
additional parameters [3; and 5 which determine the skewness and the tails have to
be chosen. Tail estimates are typically based on series observed over a longer time
horizont, especially rare events like crashes should be taken into account. On the
other hand, variance estimates should be adapted regularly with respect to short
term developments. The variance of the EGB2-distributed random variable X has
a linear structure

Var(X) =6°Cg, 5, = 6> (' (B1) +¢'(B2)),

where (s, 3, depends only on the shape, i.e. the scale- and location-invariant para-
meters (31, B, (see Lemma 2.1). Therefore we use 0 as volatility parameter. According
to this background, the following rescaling will be executed when pricing an option
or calculating implicit volatilities: Given a variance 62, the new 6 will be obtained
by

o

V(B + 9 (Ba)

5=

4 The EGB2 option pricing model

1. Introduction: Option pricing via an equivalent martingale measure:
Alternatively to the partial differential equation (PDE) approach the martingale
approach is a more general concept which can be applied to other more general
models and to other derivatives, for instance options.

The main idea of this approach is based on the no-arbitrage principle which
was used by Black and Scholes [3] in order to derive the well-known option pricing
formula for European call-options. The central idea of pricing an European option
is to construct a hedging portfolio, i.e., a combination of shares from the stock on
which the call is written and of shares from a bond market, so that the resulting
portfolios replicates the pay-off. At any time, the option should be worth exactly as
much as the hedging portfolio, for otherwise some arbitrageurs could make money
for nothing (”free lunch”) by trading the option, the stock and the bond market.

A few years later Harrison and Pliska [12] made this concept more explicit. In
their terminology the fair value of an option or more general of a contingent claim is
given by the discounted expected value of the pay-off under an eqivalent martingale
measure (EMM). The EMM is sometimes also termed as risk-neutral or risk-adjusted
measure. In other words the underlying price process should be a martingale unter
the EMM. No arbitrage was shown to be equivalent to the existence of an equivalent
martingale measure. Under the assumption of no arbitrage this measure is unique
if and only if the market is complete, i.e. every contingent claim can be duplicated
by a suitable portfolio.

In the model of Black and Scholes the price process of the underlying stock is
modeled by a geometric brownian motion, the equivalent martingale measures is
obtained by the Girsanov transformation. This, however, implies the assumption of

11



normal distributed returns which - as we have seen in the previous section - seems
not very realistic. In order to obtain generalized distributions for the returns one has
to generalize the price process. One way is to assume exponential Lévy processes as
a more realistic model for stock prices. This was done for example by Gerber and
Shiu [9], Eberlein and Keller [6] or Prause [19]. To derive an equivalent martingale
measure we can use the so-called Esscher transformation for example. Originally
the concept of the Esscher transform was a time-honored tool in actuarial science.
Gerber and Shiu [9] applied this concept to value derivative securities. However,
there is of course a price we have to pay: The market is now incomplete. This
means it contains non-attainable contingent claims, i.e there are cash flows which
cannot be replicated by self-financing trading strategies. If the market is incomplete
we have several choices of equivalent martingale measures to price options. In this
case it is quite natural to specify the preferences of the agents in order to select one
of the martingale measures. The specification of the behaviour of the investor could
be done for example in terms of utility functions. Applied to the concept of Esscher
transformation we assume an agent with power utiliy function (see Gerber and Shiu

[9])-

2. The EGB2-Lévy motion: For every infinitely divisible distribution £ we
can easily construct a standardized Lévy process® (X;);>o such that X; ~ £ (see for
example Breiman [5]). Since the EGB2 distribution is infinitely divisible there exists
a Lévy process (X;)t > 0 with X; ~ EGB2. This process will be termed FGB2-
Lévy motion in the sequel. Consequently, all increments of length 1 are distributed
according to the EGB2 distribution. Let M,; denote the moment generating func-
tion of X; for any ¢t > 0. Using certain properties of Lévy processes the moment
generating function can be represented as

Mi(u) = Elexp(uXy)) = [E(exp(uX1))]' = M;(u)’
= (exp(uu) B ;{Z:gz)_ 5u)> , _b <u< @ (4.12)

4] d
As a simple consequence the characteristic function of X; derives as

B(By + diu, By — m))t
B(By, B2) '

Using the Fourier Inversion formula one can calculate the probability density func-
tion of X; by means of
1 [~ _
fi(u) = e "y (z)dx. (4.14)

2r ) o

oilu) = Miy(iu) = <exp(u i) (4.13)

A plot of the convolution density f;(u) of the EGB2-Lévy motion for Mobilcom AG
is shown in Figure 7 for ¢ € [0.2,2] and u € [—0.2,0.2]. Moments, skewness and
kurtosis of f; are derived in appendix B.

3A standardized Lévy process is a stochastic process with stationary and independent incre-
ments and starting point Xy = 0.

12
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Figure 7: Convolution densities of EGB2-Lévy motion (Mobilcom AG).

3. The exponentiell EGB2-Lévy model: According to the proceeding of Eber-
lein and Keller ([6]) or Prause ([19]) we consider a financial market living on a
stochastic basis (€, F, (F;)o<i<r, P) which satisfies the usual conditions. We fur-

ther suppose that there are assets, a risk free asset (B;)o<i<r with By = 1 that
follows the partial differential equation

dBt = TBtdt, 0 S t S T.

Here r denotes the riskfree rate of interest and T the fixed (finite) time horizont.

The second risky asset is a stock whose price process is modeled by an exponential
EGB2 Lévy process (S;);>0 with

S, = Spe™t, 0<t<T,

where (X;)o<i<r is an EGB2 Lévy motion.

4. Esscher transformation of the EGB2-Lévy motion: Let (X;)o<;<r be an

EGB2 Lévy motion and h € R for which M, (h) exists. Then the Esscher density of
X, for the parameter h and ¢ > 0 is defined as

. _ €hmft(l') B €hmft(l') B eh:L‘ . )
P = 1 o yan = My~ Mty )

The corresponding characteristic function admits the following representation:

13



Lemma 4.1 (Characteristic function of the Esscher density) Let (X;);>o be
a Lévy process. For any t > 0 let further fi(-) denote the corresponding probability
density function and My the moment-generating function of Xy. Then, for the
associated Esscher transformed Lévy process with density fi(-; h) the corresponding
characteristic function is given by

o o(uw—th)  (pi(u—ih) t
atst) = 20 = () 1

Proof: Simple transformations and application of equation (4.15) yields

SOt(U; h) — /_OO e“imft(a:, h)da: — /OO euimehmft(x) dr = 1 /_oo e“i”hwft(a:)dx

% o Mu(h) My(h) J
_ 1 * pluhiiz ¢ () 1, ¢i(u — ih)
= T | = 2R, o

Example 4.1 (CF of the Esscher transformed EGB2-Lévy motion) Let
(Xi)e0 be again an EGB2-Lévy process. Then the characteristic function of the
Esscher-transformed density of X, is given by

. B((B1 + 0h) + diu, (B, — 6h) — diu) "
h) = tiu) -
QOt(U, ) exp(lu’ ZU) ( B(ﬁl + 6iU,B2 _ 6ZU)
In terms of Fischer [8] we see that the Esscher-transformed density of X, follows an
FEGB?2 distribution with parameters ut,d, 51 + 0h, B2 — Oh, t.

Following Gerber and Shiu [9] the process associated to equation (4.16) or (4.15) is
again a Lévy process with moment-generating function

o el f, () M (u+ h)
M (u; h :/ e’ dr = —~——72 = M, (u; h)". 4.17
t( ) - Mt(h) Mt(h) 1( ) ( )
As the exponential function is positive, the correponding Esscher measure is equiva-
lent to the original measure, that means, loosely speaking, both probability measures

have the same null sets, i.e. sets with probability measure zero.

Finally, it is desirable to choose a suitable h* such that the discounted stock price
process e "tS, is a martingale with respect to the Esscher measure. For these pur-
poses the so-called martingale equation can be derived as follows:

So=FE*(e7S,) <= € =M(1,h") <= r=In(M(1,h")). (4.18)

In order to get a martingale one has to choose the Esscher parameter A* in such a
way that the equation on the right hand side of (4.18) is fulfilled. Equivalently, we
have to search for a root h* of the martingale function

M(h) =r —In(My(1, h)).

For instance, the martingale function for the exponential EGB2 Lévy process is

given by
0 —9
R ] Sy e e M

To illustrate this, consider the martingale function in Figure 8 for the EGB2 distri-
bution and the selected financial return data.

14
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Figure 8: Martingale function (EGB2).

5. Pricing European options via Esscher transformation: As already men-
tioned in the introductory part about options the fair value C' of an European call
option on a stock with exercise price B and maturity date T is given by

C=e"T. E*(maX{ST — B; 0}), (4.19)

where E* denotes the expectation value of a random variable with respect to the
equivalent martingale measure, here the risk neutral Esscher measure P* and r the
risk-free interest rate. With x = In(B) — In(S,) and

e’ fr(z;h*) =€ - fr(z; h* +1) (4.20)

equation (4.19) becomes
C = e’"T/ (Soe” — B) fr(z; h*)dx
/ fr(z; h* + 1)dx —e_’"TB/ fr(z; h*)dz (4.21)

(1= Fr(k;h*+1)) —e ™' B - (1 — Fr(k; h*)), (4.22)

where Fp(-; h*) denotes the cumulative distribution function of the Esscher transfor-
med Lévy process with characteristic function ¢;(-; h*) given in the previous Lemma
4.1. Tt can be obtained by means of the Fourier Inversion formula (see for example
Kendall, Stuart and Ord [15], chapter 4):

Fr(z;h) =

wlb—t

27 1

L/QOT e — op(uyh)e” du
0
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6. Numerical implementation and results: To calculate the Esscher prices
three major steps have to be run:

1. At first, estimate the parameter of the EGB2 distribution for given return
data.

2. Secondly, determine the martingale parameter hA* as the root of martingale
function.

3. Finally, the discounted expectation value from (4.19) has to be determined
numerically. This could be done in different ways:

One possibility is to calculate fr(-, h*) via (4.16) and (4.15) with the help of
Fast Fourier methods and to apply numerical integration methods to evaluate
the integrals in (4.21).

The alternative is to calculate Fip(-,h*) directly from its corresponding Es-
scher characteristic function given in Lemma 4.1. Bohman [4], 1975 proposes
five different methods to evaluate numerically the integral leading from the
characteristic function to the corresponding probability density function, the
simplest one is

The method described above has been applied to the financial return data of Deutsche
Telekom AG. Some results are shown in Figure 9 and 10 where the differences of the
Black and Scholes prices minus EGB2 prices are presented. The typical pattern as
already observed by Eberlein and Keller [6] is confirmed. For options with a short
time to maturity we also state the W-shape, a result of the higher kurtosis of the
risk-neutral EGB2 density. Therefore Black-Scholes prices are higher at-the-money
and lower in- and out-of-money.
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EGB2-BS difference

05 1

EGB2-BS difference
0

BS minus EGB2 prices (DeLitsche,TeIekom AG)
~ =0, vola=0.21 -

Figure 9: Differences: EGB2 minus BS prices.

BS minus EGB2 prices (Deutsche Telekom AG)
r=0, vola=0.21,1=0.2

06 0.8 1.0 1.2 1.4

stockprice-strike ratio

Figure 10: Differences: EGB2 minus BS prices.
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7. Saddlepoint Approximation to EGB2-Esscher Prices: As an alterna-
tive to FF'T methods the saddlepoint approximation provides a useful tool which
computes the probability density function or tail probability by Fourier inversion
formula by an expansion of the convex cumulant-generating function at the saddle-
point. Hence, the first derivative vanishes and the approximation obtains a simple
form. Rogers/Zane [20] proposed the concept of saddlepoint approximation in the
context of pricing options. Prause [19] applied the proposal of Roger and Zane to
approximate option prices by means of Esscher transformation and generalized hy-
perbolic distributions. Applied to EGB2-Esscher pricing the proceeding is as follows:

Let (X;)i>0 again denote the EGB2-Lévy process. In particular, the cumulant-
generating function of X is given by the logarithm of the moment generating func-
tion

Kr(u) =In(Mp(u) =T - In(M;(u)).

Consequently, using relation (4.12) the cumulant-generating function of the Esscher
transform is obtained by

Kr(u;h) = In(Mg(u;h)) =T - (In(My(u+ h)) — In(M;(u)))
B B(B1 +0(u+h), B> — 6(u+ h))
= Twh+ln ( B(: + du, s — ou) )
= Tph+In(T(B+0(u+h))+T (B —(u+h))
—I'(B1 + 0u) — T'(By — du).

Let E* denote the expectation value with respect to the EMM P*. Then the fair
price of an European put option can be written as®

p = E*[e""(B-Sr)]
— ST B [(e“ . eXT)+] with % = log(B/Sy). (4.23)

Define the measure Py by a second exponential tilting®
dp;
dpP*

under the EMM P*. Using this transformation equation (4.23) changes to

= exp(yXr — Kr(y; h))

p==Sy-e T P*(Xp < k) = Sp-e TN pr (X < k). (4.24)
Besides, the cumulant transform K, (u) of P is given by
Ky(u) = Kz (y + u; h) = Kr(y; h).

The tail probabilites from equation (4.24) may be approximated by saddlepoint ap-
proximation.

4The corresponding call value can be obtained via put-call-parity as ¢ = p+ Sy —e "7

>This exponential tilting is not related to the Esscher transform which was used to obtain the
equivalent martingale measure.
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How to calculate the tail probabilities? One appication of saddlepoint methods is to
find approximations of the cumulative distribution function of X,, = >or, X; where
Xy, ..., X, are i.i.d. random variables with cumulant-generating function K(z). The
following approximation formula goes back to Lugannani and Rice [17] and is valid
for all x € R.

Proposition 4.1 (Lugannani-Rice formula) Let z € R. Assume that a solution

y(x) of the equation u(x) = K'(z) = x exists. Then

P(%o < 0) = (@) — () (57—
n<xz)=o(r(z o(r(x o @)

where p and ® are the probability density function and cumulative distribution func-
tion of the standard normal distribution, respectively and

r(w) = sgn(j(e)) - v/2n - (g — K(9(x))),
Ax) = Vn-j(@) - o(§(x)) with o(x) = K" (z).

Corollary 4.1 (Lugannani-Rice for EGB2) Let us assume that there exist y;
and yy satisfying Kr(y7; h) = k and K, (y3) = k. Applying the above formula to the
tail probabilities of equation (4.24) we get

+ O(n“”)) ,

k) 1K)

PH(Xr < ) ~ B(r(K)) — o(ra(w)) - (% _ ! ) ,
1

—_

Py (X < k) = ®(ry(k)) — ¢(ra(k)) - (AQ(H) 7”2(@) ,

with
Ni(k) =i -oily;), i=1,2,

o1(x) = Kp(ash), oa(a) = Ki(a),

ri(z) = sgn(y;) - V2 (yi - & — Kr(yish)),

ro(w) = sgn(y3) - ¢2 (s 5 — Ky (u3)-

5 Conclusions

The EGB2 option pricing model outlined in this paper provides a more realistic
model compared to that of Black and Scholes. Assuming the more flexible EGB2
distribution as model for financial return data leads to modified option prices. Espe-
cially, in case of options with short time to maturity Black & Scholes is overpricing
at-the-money and underpricing in- and out-of the money. Besides, estimation of
EGB2 parameters is particularly easier than estimating parameters of the genera-
lized hyperbolic distribution, whose density includes the modified Bessel function.
What still remains to do is to calculate sensitivities such as implicit volatility for
the EGB2 model and to compare it with the generalized hyperbolic model.

19



A Beta and Gamma functions

Following for example Abramowitz and Stegun [1] the Beta function for z,y € C
with R(z) > 0 and R(y) > 0 is given by the integral

w/2

1
Bla,y) = / I — )Yt = 2 / (sin £)27L (cos £) 2Lt (1.25)
0 0

Alternatively, it can be represented in terms of the Gamma function as

B(x,y):% with T(z) = /0 ety (1.26)

Often the derivatives of the logarithm of the Gamma function are very useful, na-

mely Digamma function or Psi function ¢ (z) = dlgg) = I;,((f)) and the Polygamma
functions (" (z) = %&”) = d‘fvnnfl In(I'(x)). An algorithm for evaluating arbitrary

Polygamma functions was proposed by Klein [16].

B Moments of the EGB2-Lévy motion

Proposition B.1 (Moments) Let (X;);>¢ denote the EGB2-Lévy motion. Then
first four moments of Xy, t > 0, are given by

pe = E(Xy) = pt + 6t ((581) — ¢(B2)) (2.27)
My = E(X; — m)? = t6° - (¢'(B1) + ¢’ (B2)) = Var(Xy), (2.28)
Mz = E(Xt - Mt)3 =16 - (1/)”(31) - 10,1(32)) ) (2-29)

My = E(Xy — )" =t6" - [(@" (1) + 0" (B2)) + 3t - (¢ (B1) + ¢'(2))*] . (2.30)

Proof: As a consequence of infinite divisibility, the moment generating function of
X, is given by

B(py + du, Be — 5U)>t
B(p1, f2) '

Calculating the first four derivatives yields

M) = (expon)-

Mi(u) = ute! ™ <B(B1 + du, By — (5u)>t

BBy, o)
B(B, + du, By — 6u)\'™"
+euutt< (8 E(éf,é) “)) 5 ((By +5u) — )z — bu))
= ekut B(Bl—i_(su’BQ_(su))t w) — —ou
_ ( e [t + 16 (9 (B + 6u) — (B> — o)

= Ma(u) - [t + 18 V(81 + 6u) = (5o = 5u) | = My(u) - Pi(u),
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implying E(X;) = M}(0) = ut + §t (¢(51) — ¥(B2)). Before proofing the other
results, it is useful calculating the first three derivatives of P;, which are given by

Pi(u) = t6* (¢ (By + 6u) + ¢ (B, — 6u)), (2.31)

P (u) = t6* (V" (By + ou) — " (By — du)), (2.32)

P (u) = t6* (" (B1 + 6u) + 9" (s — du)). (2.33)
Furthermore,

M (u) = Mi(u) - Pe(u) + Mi(u) - Pi(u) = My(u) - Py(u)* + Mq(u) - Py(u)
= My(u) - (Pe(u)® + Pi(u)).

Thus, one can calculate the variance of X; by
Var(X;) = M (0) — Mi(0)* = t6% - (&/(81) + ¢/ (B2)) -
A simple derivative calculation yields

M () = Mi(u) - (Pu(u)® +Pi(u)) + My(u) - (2Py(w)Py(u) + Pf (u))
= My(u)(Py(u)* + 3P, (u)Pi(u) + P (u)).

Using the relationship between moments and centered moments,

E(Xy = )’ = M{(0) = M (0) M} (0) + 2M;(0)° = P/'(0).

Finally,
M () = Mi(u)(Pi(u)’ + 3Pi(u)Pi(u) + Py (u)) +
M, () (3P, (u)*P;(u) + 3P; (u)Py(u) + 3P (u)* + P} (u))
= My(u)(Pi(u)' + 3P;(u)Py(u)? + Pi(u)P/ (u)) +
Mt(u)(?ﬂ’t( V2P (u) + 3P/ (u)Py(u) + 3P;(u)? + P (u))
= My(u) {Pi(u)* + 6P (u)*P;(u) + 4Py (u)P; (u) + 3P, (u)* + P;" (u) } .

Applying again relations between moments and centered moments,

E(Xy— )" = M{"(0) =AM (0)M;(0) + 6M}(0) M} (0)* — 3M;(0)*
= 3P,(0)*+P/"(0). O

Corollary B.1 Let (X,)i>o denote the EGB2-Lévy motion. Then the skewness and
the kurtosis of Xy, t > 0, are given by

S(Xt)zﬂ_i_ (B) = ¢"(Ba)

(M)'> vt B+ (Ba)

My (@"(B1) +4"(B2)) + 3¢ (B1) + ¢'(82))?
(Mz)? t- (V' (Br) +4'(B2)))? '

K(X,) =
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