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abstract

The scaling function φ from multiresolution analysis can be used to constuct a

smoothing tool in the context of time series analysis. We give a φ-based time

series smoothing function for which we show the properties of a quasilinear

moving average. Furthermore, we discuss its features and especially derive the

distributional properties of our φ-based quasilinear moving average given some

simple underlying stochastic processes. Eventually we compare it to existing

smoothing methods in order to motivate its application.
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1 Introduction

There are different ways of approaching the scaling function, but it is generally considered to be

a part of multiresolution analysis (see Percival, 2000), i.e. the analysis of a stochastic process on

different frequency layers. Therefore, the process is split up into a certain number of frequency

components which give the amount of total oszillation explained by the respective frequency. In

signal processing, where this concept was developed first, the Fourier transform was an adequate

tool for identifying regular patterns. However, there are various fields of application, e.g. financial

time series analysis, where patterns with time-varying intensity and period (e.g. yearly temperature-

dependent oszillations) do occure. The Fourier transform lacks the flexibility to capture that. A

generalisation of Fourier transform is the wavelet transform which is a mapping from time space

into time-frequency space that is – in contrary to the latter – capable of identifying regular patterns



with time-varying intensity and frequency. In addition to that, it is possible to aggregate the time-

dependent influence of all frequencies smaller than a specific one. This is done based on the scaling

function φ, also called father wavelet (see Mallat, 2003).

Within this article we use the scaling function to construct a smoothing tool by excluding

high-frequency patterns. However, when doing this, several questions arise, e.g.: What properties

does this smoothing function have? Can we derive the specific distributional properties given a

known underlying process? How robust is our smoothing function, i.e. how big is the influence of

a temporary shock? Within this paper we answer these questions. In this context we compare the

φ-based quasilinear moving average to existing smoothing methods in order to justify its application.

The paper is structured as follows: In Section 2 we define the scaling function φ and show that

the φ-based quasilinear moving average has the required properties. Therebye we find that our

formula contains the linear moving average as a special case. Subsequently, in Section 3 we discuss

the distributional properties given some simple stochastic processes. In Section 4 we benchmark

our formula mainly by deriving its influence function and respective formulas for the linear moving

average, the exponential smoothing method and the Kalman filter. Section 5 concludes the paper.

2 Using the scaling function to construct a quasilinear

moving average

Before constructing a moving average formula we give a brief definition of a scaling function φ

and show how to construct a φ-based representation of a process (Xt)t∈Z. Subsequently we give in

Section 2.2 a φ-based smoothing formula and prove it to be a quasilinear moving average. Some

properties that follow from this proof are included as well.

2.1 Scaling functions

In literature there are various definitions for the scaling function, some are more restrictive than

others. Kaiser (1994), for example, mentiones orthogonality as a core feature, whereas Ahuja et al.

(2005) give non-orthogonal functions as well and state that finite support is a desirable requirement.

The definition below is mainly based on Percival & Walden (2000), Mallat (2003) and Farge (1992).

We omit the orthonormality condition, because it is not required for our purpose and thus merely

restricts the set of scaling functions. Our theory is developed for a stochastic processes on a discrete

time grid with a constant ∆t = 1.

Definition 2.1 (Scaling Function).

Let φ(·) ∈ L2(R) with φ0,b(x) ≡ φ (x− b) and φa,b(x) ≡ 2−a/2φ
(
2−ax− b

)
, a, b ∈ Z, be a function

such that the following properties hold:
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Figure 1: The Haar scaling function at different scales

1. {φa,b : b ∈ Z} is a basis of the closed subspace Va ⊂ L2(R) with Va ≡ span {φa,b(·) : b ∈ Z}.

2. Given a set of indicies
{

(a1, a2, . . . , ak) ∈ Zk | a1 < a2 < ... < ak, k ∈ Z
}

the corresponding

subspaces have the property

V0 ⊃ Va1 ⊃ Va2 ⊃ Va3 ⊃ . . . ⊃ Vak and
⋃
a∈Z

Va = L2(R),
⋂
a∈Z

Va = {0} ,

where the overline denotes the closure and the zero represents the null function.

3. ‖φ‖1 = 1.

Then the function φ is called scaling function.

From Definition 2.1 instantely follows ‖φa,b‖ = 〈φa,b, φa,b〉 = 1, ∀ a, b ∈ Z. This is because while

translating φ by (a, b) the energy is preserved by the factor 2−a/2. Further properties can be found

e.g. in Percival (2000) or Farge (2003). We see that b serves as a translation parameter and a is a

scaling parameter that is indirect proportional to the frequency.

There is a vast amount of suggestions for scaling functions. For an overview see e.g. Mallat

(2003), Daubechies (1992) or Kaiser (1994). Ahuja et al. (2005) also discuss relevant functional

properties and favour the B-Spline function (see Appendix B). As a simple example we plot three

consecutive subspaces of the Haar scaling function (see Appendix A) in Figure 2.1 to show the

effect of shifting the scaling parameter a from Definition 2.1.

We can use φ to represent any real-valued function x with finite energy (i.e. ‖x‖2 <∞) as a linear

combination of bases of V0. The coefficients are computed via the orthogonal projection of x on
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φ0,b, i.e.

x(t) =
∑
b∈Z

〈x, φ0,b〉φ0,b(t). (2.1)

By increasing a we can generate a more and more smoothed version of x(t), denoted by h(t),

ha(t) =
∑
b∈Z

〈x, φa,b〉φa,b(t), (2.2)

which excludes the effect of all scales smaller than 2a (see Percival & Walden, 2000). For efficient

computation of ha(t) it is quite useful to deal with a scaling function that has a finite support

S = [sl, su] ⊂ R. Given that, (2.1) and (2.2) can be reduced to

x(t) =

t−bslc∑
b=t−dsue

φ0,b(t)

bsuc+b∑
j=dsle+b

x(j)φ0,b(j),

ha(t) =

bt/2a−slc∑
b=dt/2a−sue

φa,b(t)

b(su+b)2ac∑
j=d(sl+b)2

ae

x(j)φa,b(j) (2.3)

whereby a > 0 and (2.1) resp. (2.2) is contained as limit for sl → −∞, su →∞.

Having S we eventually specify for every time t the cone of incluence (COI), which is the

set
{

(k, a) ∈ Z2 | (d(sl − su)2ae ≤ k − t ≤ b(su − sl)2ac)
}

that denotes – given a scale a – the area

around t for which information is required in order to be able to exactly compute (2.3). If not

all of the required information is available – which is the case for the edges of a data sample

– the coefficients and therefore (2.3) are skewed. Meyers et al. (1993) and Torrence & Compo

(1998), for example, give some methods to reduce this skewing, but no method allows to quanitfy

how much. Moreover applying these methods can introduce other problems like break points or

artificial patterns. A sufficient solution has – to our best knowledge – not yet been found.

2.2 A φ-based quasilinear moving average

We now first give the definition of a quasilinear mean and then show how to apply this concept to

an autocorrelated time series. A quasilinear mean for an independent identically distributed (i.i.d.)

sample (x1, . . . , xn) is defined as

Mu = u−1

(
n∑
i=1

u(xi)gi

)
, gi ≥ 0,

n∑
i=1

gi = 1, (2.4)
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with g1, . . . , gn ∈ R and u [a, b] → R continuous, strictly monotone with existing inverse u−1 (see

Nagumo, 1930, and Kolmogorov, 1930). To identify a function M as a quasilinear mean, we have

to show that it can be split up into the components given in (2.4). Alternatively to that, the below

theorem can be applied.

Theorem 1 (A quasilinear mean).

The real-valued function M is a quasilinear mean, if and only if it has the following properties:

1. M is continuous,

2. M is monotonic increasing, i.e. Rn 3 x ≤ y ∈ Rn ⇒M(x) ≤M(y),

3. M is reflexive, i.e. M(x, x, . . . , x) = x,

4. M is associative, i.e. M(x1, . . . , xn+1) = M(x, . . . , x, xn+1) with x = M(x1, . . . , xn).

Proof: See De Finetti (1931), Kolmogorov (1930).

�

The above proof was done for an i.i.d. sample, but we can also apply this concept to an autocor-

related time series and call it moving average. Therefor we interpret at every time t a certain area

around it as an i.i.d. data sample on which the quasilinear mean formula is applied. According to

this interpration various forms of moving averages can be computed (for examples, see e.g. Hamil-

ton, 1994). Within this section we propose a new candidate by proving that the smoothed time

series h(t) from (2.3) is a quasilinear moving average:

Theorem 2 (A φ-based quasilinear moving average).

Let X = (Xt)t∈Z ∈ L2(R) be a real-valued stochastic process with discrete time steps of length ∆t

= 1. Let φ be a continuous scaling function according to Definition 2.1 with
∑
b φa,b(t)φa,b(k) ≥ 0,

for any t, k ∈ Z. Then

M(X; t, a) =

bt/2a−slc∑
b=dt/2a−sue

φa,b(t)

b(su+b)2ac∑
s=d(sl+b)2

ae

Xsφa,b(s) (2.5)

is a quasilinear moving average of X at time t for which the properties from Theorem 1 hold.

Proof: We check if M(X; t, a) has the properties given in Theorem 1.

1. Continuity: The function φ is continuous with ‖φ‖ = 1 and Xt is square-integrable. The

convolution of φ and Xt is therefore finite and M(X; t, a) as a linear combination of φ does exist

and is continuous.

2. The function M(X; t, a) is monotonic increasing: Let X′ be equal to X but with modified
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component X ′k = Xk + δ, k ∈ Z, δ > 0. The difference

M(X′; t, a)−M(X; t, a) = δ

bt/2a−slc∑
b=dt/2a−sue

φa,b(t) · φa,b(k) (2.6)

is greater or equal zero as demanded in Theorem 2.

3. The function M(X; t, a) is reflexive: This follows from
∑
φa,b = 1 (Property 3 of Definition

2.1), because with Xt = x ∈ R ∀t ∈ Z we can derive:

M(X; t, a) =

bt/2a−slc∑
b=dt/2a−sue

φa,b(t)

b(su+b)2ac∑
s=d(sl+b)2

ae
x · φa,b(s) = x

bt/2a−slc∑
b=dt/2a−sue

φa,b(t)

b(su+b)2ac∑
s=d(sl+b)2

ae
φa,b(s)

︸ ︷︷ ︸
=1

= x

bt/2a−slc∑
b=dt/2a−sue

φa,b(t) = x.

4. The function M(X; t, a) is associative: For the sake of clarity we leave out the exact

summation bounds given above and sum the translation parameter b over Z. Let t be such that all

data points within its COI are known and set x = M(X1, . . . , Xn; t, a)

M(X1, . . . , Xn, Xn+1; t, a) = M(x, . . . , x,Xn+1; t, a)

⇔
∑
b∈Z

∑
s 6=n+1

Xsφa,b(t)φa,b(s) +Xn+1

∑
b∈Z

φa,b(s)φa,b(t) =
∑
b∈Z

∑
s 6=n+1

x · φa,b(t)φa,b(s) +Xn+1

∑
b∈Z

φa,b(s)φa,b(t)

⇔M(X1, . . . , Xn; t, a) =
∑
b∈Z

∑
s 6=n+1

x · φa,b(t)φa,b(s) = x = M(X1, . . . , Xn; t, a)

In the second equation we subtract the last addend on both sides and the last equation holds because

M(x; t, a) is reflexive.

�

Using Property 3 and Property 2 of Theorem 1 we can instantly show the internality of M(X; t, a).

I.e. if X1, . . . , Xn denote the data points within the cone of influence for time t and scale a, than

holds

min (x1, . . . , xn) ≤M(x1, . . . , xn; t, a) ≤ max (x1, . . . , xn).

Eventually, having defined and constructed a quasilinear moving average, we want to remark that

(2.5) is reduced to the well-known linear moving average when choosing the Haar scaling function

for φ in Theorem 2. This shows that linear smoothing functions are included in this concept.
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3 Distributional properties of a φ-based quasilinear mov-

ing average

Transforming a process via (2.5) gives rise to the issue of how the distributional properties are

modified. This question is of interest when using the modified process within a larger analytical

discussion like e.g. trend analysis or forecasting. In this section we therefore discuss this matter

based on two simple underlying stochastic processes (Xt)t∈Z, namely an AR(1)- and a GARCH(1,1)-

process (if definitions are unknown, see Appendix C). The properties of any linear combination

of these processes resp. any generalisation of the lag-order can be derived analogously. For an

autoregressive process of lag-order one we can show:

Theorem 3 (The φ-based quasilinear moving average of an AR(1)-process).

Let X = (Xt)t∈Z with Xt = µ + θXt−1 + εt and µ, θ ∈ R, εt ∼ N (0, σ2), 0 ≤ σ < ∞. W.r.t.g.

set X−∞ = 0. Then M(X; t, a) from (2.5) is again Gaussian distributed at time t with mean and

variance

E (M(X; t, a)) =

bt/2a−slc∑
b=dt/2a−sue

φa,b(t)

 t−1∑
j=d(sl+b)2

ae

Xjφa,b(j)

+

b(su+b)2ac∑
j=t

φa,b(j)

[
µ

j−t∑
i=0

θi + θj−t+1Xt−1

]
V ar (M(X; t, a)) = σ2

t+b2a(su−sL)c∑
p=t

 bt/2a−sLc∑
q=bp/2a−suc

kp,q

2

, (3.1)

with

kp,q = φa,q(t)

bsu+q/2ac∑
j=t

θj−tφa,q(j).

Proof: With X defined as an autoregressive process and (2.5) we write

M(X; t, a) =

bt/2a−slc∑
b=dt/2a−sue

φa,b(t)

b(su+b)2ac∑
s=d(sl+b)2

ae

Xjφa,b(j)

=

bt/2a−slc∑
b=dt/2a−sue

φa,b(t)

 t−1∑
j=d(sl+b)2

ae

Xjφa,b(j) +

b(su+b)2ac∑
j=t

φa,b(j) [µ+ θXj−1 + εj ]

,
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because up to time t the realizations of the process are known. Using

Xt+k = µ

k∑
i=0

θi + θk+1Xt−1 +

k∑
i=0

θiεt+k−i,

and X−∞ = 0 as well as the autoregressivity of X resp. E(et) = 0 ∀t we can simplify the expression

to

M(X; t, a) =

bt/2a−slc∑
b=dt/2a−sue

φa,b(t)

t−1∑
j=d(sl+b)2

ae
Xjφa,b(j)

+

bt/2a−slc∑
b=dt/2a−sue

b(su+b)2ac∑
j=t

φa,b(j)φa,b(t)

µ j−t∑
i=0

θi + θj−t+1Xt−1 +

j−t∑
i=0

θiεj−i


=

bt/2a−slc∑
b=dt/2a−sue

φa,b(t)

t−1∑
j=d(sl+b)2

ae
Xjφa,b(j)

+

bt/2a−slc∑
b=dt/2a−sue

b(su+b)2ac∑
j=t

φa,b(j)φa,b(t)

µ j−t∑
i=0

θi + θj−t+1Xt−1


+

bt/2a−slc∑
b=dt/2a−sue

b(su+b)2ac∑
j=t

φa,b(j)φa,b(t)

j−t∑
i=0

θiεj−i (3.2)

The third factor of (3.2) containing the error terms can be written as

t+b2a(su−sL)c∑
p=t

εp

 bt/2a−sLc∑
q=bp/2a−suc

kp,q

 (3.3)

with

kp,q = φa,q(t)

bsu+q/2ac∑
j=t

θj−tφa,q(j). (3.4)

As εt ∼ N (0, σ2) is i.i.d., any sum of innovations is again Gaussian distributed and the (3.1)

follows instantely.

�

With the above theorem we see, that M(X; t, a) is stationary if X is a stationary AR(1)-process,

i.e. if |θ| < 1.

In Theorem 3 we fix volatility to be time-invariant. This restriction is omitted in the GARCH(p,q)-

model developed by Engle (1982) and Bollerslev (1986), which computes volatility as an autore-
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gressive process based on the last p observed errors and last q computed volatility values. We now

can show:

Theorem 4 (The φ-based quasilinear moving average of a GARCH(1,1)-process).

Let X = (Xt)t∈Z be an GARCH(1,1)-process, i.e Xt = σtεt with εt ∼ N (0, 1) and σ2
t = ω + αX2

t +

βσ2
t−1. For the parameter holds: µ ∈ R, ω > 0, α, β ≥ 0. W.r.t.g. set X−∞ = 0. Then M(X; t, a)

from (2.5) is again Gaussian distributed with mean and variance

E (M(X; t, a)) =

bt/2a−slc∑
b=dt/2a−sue

φa,b(t)

t−1∑
j=d(sl+b)2

ae

Xjφa,b(j)

V ar (M(X; t, a)) =

t+b2a(su−sL)c∑
p=t

(
α0

p−t∑
i=0

(α1 + β)i + (α1 + β)p−t(α1ε
2
t−1 + βσ2

t−1)

) bt/2a−sLc∑
q=bp/2a−suc

kp,q

2

with

kp,q = φa,q(t)

bsu+q/2ac∑
j=t

θj−tφa,q(j).

Proof: With X defined as an autoregressive process and (2.5) we write

M(X; t, a) =

bt/2a−slc∑
b=dt/2a−sue

φa,b(t)

b(su+b)2ac∑
j=d(sl+b)2

ae

Xjφa,b(j)

=

bt/2a−slc∑
b=dt/2a−sue

φa,b(t)

 t−1∑
j=d(sl+b)2

ae

Xjφa,b(j) +

b(su+b)2ac∑
j=t

φa,b(j)σtεt

,
(3.5)

because, again, up till time t the realisations of the process are known. So, as the mean is additive

and E(εt) = 0, we get

E (M(X; t, a)) =

bt/2a−slc∑
b=dt/2a−sue

φa,b(t)

t−1∑
j=d(sl+b)2

ae

Xjφa,b(j).

The process X is uncorrelated. So its sum is again Gaussian distributed. The mean is already

given above and for the variance we use a result from (see McNeil et al., 2005) that reads as

V ar(Xt+h|Ft) = α0

h∑
i=0

(α1 + β)i + (α1 + β)h(α1ε
2
t−1 + βσ2

t−1), (3.6)
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whereby Ft is the Filtration adapted to X. With (3.3) and (3.6) we can conclude

V ar (M(X; t, a)) =

t+b2a(su−sL)c∑
p=t

V ar(εp|Ft)

 bt/2a−sLc∑
q=bp/2a−suc

kp,q

2

=

t+b2a(su−sL)c∑
p=t

(
α0

p−t∑
i=0

(α1 + β)i + (α1 + β)p−t(α1ε
2
t−1 + βσ2

t−1)

) bt/2a−sLc∑
q=bp/2a−suc

kp,q

2

�

4 Comparing the φ-based quasilinear moving average to

other smoothing functions

Having introduced a new moving average formula for time series smoothing, we now compare it to

existing ones in order to justify and motivate its application. Therefore we first pick and define

three widely used smoothing methods, namely linear moving average, exponential smoothing and

Kalman filter. In a second step, we compare them to our formula. The focus of the analysis lies

thereby on the influence of shifts in the time series and and the calibration options.

4.1 A variety of smoothing functions

The definitions given in this section are mainly based on Hamilton (1994) and Provost (1994). For

the computation of the influence function we define a shock as a value shift of size δk ∈ R at time

k ∈ Z. Moreover, let X = (Xt)t∈Z be a stochastic process.

The φ-based quasilinear moving average M(X; t, a) reads – according to (2.5) – as

M(X; t, a) =

bt/2a−slc∑
b=dt/2a−sue

φa,b(t)

b(su+b)2ac∑
s=d(sl+b)2

ae

Xsφa,b(s).

We see that M(X; a, t) is only influenced, if k lies within the COI of t given a specific φ. The

COI’s size is controlled by the scale a which has - as it is indirect proportional to the frequency-

a fundamental meaning. The smaller a, the more high-frequency oszillations are captured in (2.5)

and vice versa, i.e. (2.5) tends to be smoother with increasing size of a. Moreover the smaller the
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distance |k − t|, the larger the influence of δk. The influence is given by

Iφ(δk; t, a) = δ

bt/2a−slc∑
b=dt/2a−sue

φa,b(t) · φa,b(k). (4.1)

where φ represents the chosen scaling function (see (2.6)). The linear moving average (LMA) at

time t is defined as

LMA(X; t, n) =
1

2n+ 1
(Xt−n +Xt−1 + . . .+Xt +Xt+1 +Xt+n) , (4.2)

whereby n ∈ N0 and t ∈ Z. The choice of n decides about the influence of outliners and the

smootheness of LMA: the larger n the smaller the influence of a single value and vice versa. However,

at the same time: the larger n, the bigger the probability that an outliner lies in the domain of the

LMA(X; t, n). From (4.2) we derive for the influence function:

ILMA(δk;n, k) =


δk/n if t− n ≤ k ≤ t+ n,

0 if |t− k| > n.

Exponential smoothing (ES), again, is characterized by

ES(X; t, α) = ES(t− 1;α) + α (Xt − ES(t− 1;α)) = αXt + (1− α)ES(t− 1;α), (4.3)

with 0 < α < 1. The smaller α the less sensitive is ES(X; t, α) and vice versa (see Provost, 1994).

As ES is iterative, we can rewrite ES(X; t, α) from (4.3) as

ES(t;α) = α

h∑
i=0

(1− α)iXt−i + (1− α)hES(t− h;α)→ α

∞∑
i=0

(1− α)iXt−i for h →∞.

So the influence function reads as

IES(δk;α, k) =


δk · α(1− α)t−k if k ≤ t,

0 if k > t.

For the Kalman filter, eventually, we refer to the simplified recursive scheme given by Provost

(1994). The smoothed time series STt at time t is computed as follows: Let δt be the difference
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between the actual obeservation at time t and the predicted observation based on the estimates at

time t− 1. Let SSLT be the smoothed slope at time t. Then, the Kalman filter reads as

δt = Xt − (STt−1 + SSLt−1),

STt = (STt−1 + SSLt−1) + α1 · δt, 0 < α1 < 1, (4.4)

SSLt = SSLt−1 + α2 · δt, 0 < α2 < 1.

The parameter α1 measures the influence of the prediction error on the smoothed time series, α2

measures its influence on the smoothed slope. Both allow to tune the smootheness of the Kalman

filter generated trend. As starting values for time t = t0, it is suggested to use STt0 = Xt0 ,

SSLt0 = 0. To get the respective influence function, we rewrite (4.4) according to the standard

Kalman state equation:

 STt

SSLt

 =

 α1

α2

Xt +

 1− α1 1− α1

−α2 1− α2


 STt−1

SSLt−1

+ wt (4.5)

where wt is distributed according to the specified prior distribution. Then follows for the two-

dimensional influence function (STt, SSLt):

IKalman(δk; k, α1, α2) =



 1− α1 1− α1

α2 1− α2


t−k α1

α2

 δk if k ≤ t,

0 if k > t.

(4.6)

From (4.6) we see – like Provost (1994) – that we have to impose restrictions on the combination

possibilities of (α1, α2). The matrix-product in (4.6) has to be strictly monotonous decreasing with

increasing power, because otherwise a shock would have the more influence, the more far away in

the past it is.

4.2 Comparing the smoothing functions

In section 4.1 we give the functional form of four smoothing methods as well as the respective

influence functions. Based on this information we are now able to compare them. As a visual aid

we plot the four influence functions derived above exemplarily for time t = 15 and δk = 1 in Figure

2.

Concerning the parameter calibration, all functions allow to reduce the influence of local process

12



Figure 2: The four influence functions at time t = 15

Figure A: Iφ using B-spline scaling function with L = 4. The dotted shows the influence function for scale

a = 4, the solid line is the same function for a = 2. Figure B: ILMA for varios k and n = 2.5 (solide line)

and n = 10 (dotted line). Figure C: IES for varios k and α = 0.3 (solide line) and α = 0.45 (dotted line).

Figure D: IKalman for varios k and (α1, α2) = (0.5, 0.002) (solide line), (α1, α2) = (0.5, 0.3) (dotted line)

and (α1, α2) = (0.7, 0.002) (dashed line).
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realisations to the cost of increasing influence of more distant values. So increasing the smootheness

of the transformed functions means at the same time increasing the the influence of shocks from

the past. This is especially significant when computing the LMA for a time t, as within its cone of

influence all values have the same wheight. In all other methods the influence of a value is super-

linear decreasing with increasing distance to t. ES and Kalman filter have the additional advantage

of future shocks being excluded as their influence functions equal zero for time index k > t.

However, the Kalman filter has one significant drawback, which is parameter calibration. It

has a bivariate parameter with no fundamental meaning. Thus makes it complicated to justify any

parameter-choice. The same holds for ES - in contrary to LMA where n can be chosen such that

a weekly or monthly average, for example, is the result. In case of a φ-based quasilinear mean,

the parameter a represents a certain scale resp. frequency (depending on φ). All oszillations with

lower scale resp. higher frequency are excluded. If we want to analyze, for example, the time series

development on a weekly basis, the a is chosen such that all oszillations with period lower than

seven are excluded.

Basically, there are two main application scenarios for smoothing functions: they are used as

a running average (computed every time step based on historical data), or they are applied to

smooth out high-frequent oszillations (i.e. noise) in order to identify any structures within a given

time series (e.g. seasonal patterns). In the first scenario, LMA and (2.5) are skewed or show the

drawback of lagging behind in case of a ramp does exist. The reason is, that both methods require

information about the future development of the process. As this is not given, the data have to be

either forecasted, ignored in the computation process or the time for which the respective formula

is applied is shifted in the past such that all required information is given. In case of LMA at time

t this would mean that not LMA(X; t, n) is computed, but LMA(X; t− n, n).

ES needs only historical data, but shows the same drawback (see Provost, 1994) – in contrary to

the Kalman filter, which includes the ramp explictely (see (4.4)). Provost (1994) adds some more

advantages of the Kalman filter to this statement, but still its main disadvantage, the parameter

calibration, remains.

If a fixed data set is given, (2.5) and the LMA enjoy the benefit of having a cone if influence,

i.e. only a limited data-set influences the smoothed function. Outside this area, shocks have no

effect. However, this cone of influence is a disadvantage for the data set’s edge regions as there

the smoothed function is skewed (see Section 2). At the same time, ES still lags behind in case

of a ramp, which makes this method inadequate for both scenarios. In toto, there are four main

arguments for using the φ-based quasilinear moving average:

• In contrary, to ES and Kalman filtering we are able to give the scaling parameter a a content-

related interpretation. This is essential for motivating any parameter choice.

• There is a cone of influence for our formula, i.e. outside a certain region, shocks do not
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influence (2.5) any more – in contrary to ES and Kalman filter where due to recursiveness

the whole past has an influence on the current value (although with decreasing size).

• Formula (2.5) introduces a rank system within its cone of influence. The greater the distance

to time t, the smaller the influence of the corresponding value on (2.5). Thus the smoothed

function adaptd the motion of the underlying time series – more than the LMA.

• In contrary to the Kalman filter, no prior distribution or starting values (as it is also demanded

for ES) are required. Formula (2.5) only requires a function φ and therefor various selection

criterions exist (see e.g. Ahuja et al., 2005).

Due to these points, we consider (2.5) it as an adequate tool for smoothing a time series, especially

when seasonal patterns are included.

5 Conclusion

Within this paper we have constructed a moving average based on the scaling function and prove it

to be quasilinear. We have discussed further features and have especially derived its distributional

properties given some simple underlying stochastic processes. This helps to answers some questions

that arise when using the smoothing function in practice.

Eventually we have compared our function to other widely-used smoothing functions. This

benchmark motivates the use of the φ-based quasilinear moving average. In contrary to exponen-

tial smoothing or Kalman filter, the parameter has a content-related interpretation (it is inverse

proportional to the frequency) and no starting values resp. a prior-distribution (Kalman filter) are

required. Moreover, (2.5) is not recursive like ES and Kalman filter. So, the smoothed function

is not influenced by the whole past but only within a certain area arount time t (the cone of in-

fluence). Shocks from the past do not necessarily have a influence on the recent smoothed values.

Due to these facts we consider the φ-based quasilinear mean as a powerful and flexible time series

smoothing tool.
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A The Haar scaling function

Let x ∈ R, then the Haar scaling function is defined as (see Mallat, 2003):

φ =


1 for 0 ≤ t < 1

0 otherwise.
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B The B-spline scaling function

Let L ∈ N\ {1}, then the function φ with

φ(x) =
1

(L− 1)!

L∑
k=0

(−1)k

 L

k

 (x− k)L−1
+

is called B-spline scaling function (see Unser, 1999).

C Autoregressivity in a time series and in its volatility

A process (Xt)t∈Z is called autoregressive process of order p (p ∈ N) or short AR(p)-process, if it

has the form

Xt = θ0 + θ1Xt−1 + θ2Xt−2 + . . .+ θpXt−p + εt, (C.1)

where εt is the error term (i.e. a random variable itself) and θ0, . . . , θp ∈ R (see Hamilton, 1994).

Autoregressive effects in volatility are captured by the so-called GARCH(p,q)-model for p, q ∈ N
(see Engle, 1982, and Bollerslev, 1986). GARCH is the acronym for ”Generalized Autoregressive

Conditional Heteroscedacity” and the standard model reads as

Xt = σtεt εt ∼ N (0, 1),

σ2
t = ω0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j ,

with ω0 > 0, αi, i = 1, . . . , p,≥ 0, βj , j = 1, . . . , q,≥ 0. For further properties and a detailed

discussion we refer to McNeil et al. (2005).
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