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This paper generalizes the locally optimal linear rank test based on cop-

ulæ from Shirahata (1974) resp. Guillén and Isabel (1998) and Genest et al.

(2006) to p dimensions and introduces a new χ2-type test for global indepen-

dence (Nelsen test). The test is compared to similar nonparametric tests by

means of the power under several alternatives and sample sizes. However, the

actual strength of the Nelsen test is the fast examination of a test decision

due to the closed form expression of the asymptotic distribution of the test

statistic which is provided by this paper.

Keywords: Multivariate linear rank test, Copula, Multiparametric copula, Test of
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1 Introduction

Testing for independence is an area of relatively huge interest in statistics. A natural

case of appliance is testing for independence when there are two samples that each are
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independent and identically distributed (i.i.d.). Shirahata (1974) generalizes a nonpara-

metric test of independence based on distribution functions to dimension p and even

allows the case of several parameters of dependence. With this procedure, one can de-

rive tests of independence that are locally optimal for a specified alternative hypothesis

under certain conditions. However, one disadvantage of the test statistic proposed by

Shirahata (1974) in the case of a multiparameteric probability distribution is that com-

ponents of dependence can cancel each other out across the parameters. The latter can

result in wrong test decisions.

This disadvantage and the lag of unique characterization of independence in a multipara-

metric setting vanishes if only the bivariate case is discussed. In particular, Guillén and

Isabel (1998), later Genest and Verret (2005) transferred this test exclusively into the

world of bivariate copulæ with one single parameter of dependence. They identify sev-

eral well known linear rank test statistics to be locally optimal under certain alternatives

and compared the power of these tests to other established tests in various scenarios.

This article is concerned with various generalizations. Firstly, a principle of construction

for locally optimal rank tests in a multivariate setting with p ≥ 2 is provided. This

principle is applied to a generalization of the copula with cubic sections introduced

by Nelsen et al. (1997), p. 83, to p dimensions. Since it possesses q = 2p dependence

parameters, a further generalization is given by the extension of testing for independence

in a multiparametric case.

It will be shown that the estimator for the q-dimensional parameter vector is asymptot-

ically multivariate normal distributed. This finding allows to construct a χ2-type test

of independence (Nelsen test). Next, the power of the Nelsen test is compared to simi-

lar nonparametric tests under certain alternatives. Those are a multivariate version of

Spearman’s ρ introduced by Schmid and Schmidt (2007) and a test based on the average

squared distance between independence copula and the empirical copula according to

Deheuvels (1979) discussed in Genest and Rémillard (2004). Both tests have a distri-

bution of their test statistic that has no closed form expression, which means that the

critical values need to be simulated of high computational costs for each sample size n

and dimension p.

A key advantage of the Nelsen test is that the asymptotic distribution of the test statis-

tic is available in explicit form and therefore the critical values can be immediately
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determined. This distinguishes the Nelsen test from other nonparametric tests of inde-

pendence and can have a crucial impact on real-time systems where calculation time is

of importance.

This paper is organized as follows: section 2 initially introduces the bivariate copula

as foundation of the Nelsen test and discusses its properties. Further, the copula is

generalized to p dimensions and it pointed out that the copula is well-defined along

with a reduced special case of it. Section 3 expands the concept of locally optimal rank

tests on p dimensions and applies it componentwisely to the reduced Nelsen copula of

the previous section. It is shown that the vector consisting of the univariate rank test

statistics is multivariate normal distributed and a χ2-type test of global independence

is provided. Section 4 shows one possible application of the Nelsen test and compares

its performance to other similar nonparametric rank tests of independence with respect

to power and calculation time. This article concludes with a short summary and an

outlook in section 5.

2 Copula with cubic sections

Definition 2.1 (Nelsen (2006)). A copula C with parameter vector θ ∈ Rp is mapping

from [0, 1]p 7→ [0, 1] with the following properties:

• For all ui ∈ [0, 1], i = 1, ..., n holds

Cθ(u1, ..., ui−1, 0, ui+1, ..., up) = 0

Cθ(1, ..., 1, ui, 1, ..., 1) = ui.

• cθ(u) = ∂
∂uCθ(u) is nonnegative for all u ∈ [0, 1]p.

If Cθ is a copula, θ is called admissible.

For the sake of simplicity we will initially introduce the copula that is relevant for this

paper for the bivariate case. In Nelsen et al. (1997), p. 83, theorem 3.2.10, the following
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bivariate copula with cubic sections is introduced:

Cθ(u, v) = C(A1,A2,B1,B2)(u, v) = uv(1 + (1− u) (1− v)× (1)

× (u (1− v)B2 + uvB1 + (1− u) (1− v)A2 + (1− u) vA1) .

A name of this copula has been absent and therefore it shall be named Nelsen copula in

the following. The cubic sections imply a simple form of the density function which has

quadratic sections and this ensures simple calculations and an intuitive understanding

of its properties.

The Nelsen copula includes several copulæ as special case, such as the iterated FGM cop-

ula, see Kotz and Johnson (1977), the Lin copula, see Lin (1987), the copula of Kimeldorf

and Sampson (1975) and the copula family of Sarmanov, see Sarmanov (1974).

The density function cθ(u, v) belonging to (1) has the following properties:

cθ(0, 0) = 1 +A2, cθ(0, 1) = 1−A1, cθ(1, 0) = 1−B2, cθ(1, 1) = 1 +B1,

i. e. the parameters describe the magnitude and the direction of deviations from the

independence copula in its 2p = 4 vertices, since independence is characterized by

Cθ(u, v) = uv ↔ θ = (A1, A2, B1, B2)
′ = (0, 0, 0, 0)′ = θ0

The Nelsen copula has a strong and weak tail index coefficient of 0 due to its polynomial

structure. Kendall’s τ takes the value

τ =
A2 (B1 + 25)

450
+
B1

18
− B2

18
− A1 (B2 + 25)

450
∈ [−0.3, 0.4]

which implies that rather weak dependencies can be modeled with the Nelsen copula.

Lemma 2.1. (1) is admissible, if (A2, A1), (B1, B2), (B1, A1) and (A2, B2) are element

of

S := {[−1, 2]× [−2, 1]} ∩
{
x, y ∈ R|x2 − xy + y2 − 3x− 3y ≤ 0

}

Proof. Cf. Nelsen et al. (1997).
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Figure 1: Density function of the Nelsen copula (1) with parameter θ = (−3, 0, 0, 0)

Figure 2 gives a graphical intuition of the set S of lemma 2.1. One has to distinguish

between three cases:

• Triangle with vertices (−1, 1), (1, 1), (−1,−1): The minimum of the density func-

tion is nonnegative and is attained in a vertex.

• Inner area of the ellipse with equation x2 − xy + y2 − 3x− 3y = 0: The minimum

is attained in between two vertices and is nonnegative.

• Black area: The minimum attains a negative value outside the interval [0, 1]. How-

ever, the density function is nonnegative on [0, 1]2.

The Nelsen copula (1) shall now be extended to p dimensions – at first for a vector of

parameters θ ∈ Rq; later only a reduced special case q = 1 is being discussed.

We use the following notation in order to uniquely identify vertices, even in higher

dimensions:
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Figure 2: Area S which ensures the bivariate Nelsen copula to be well-defined using the
example of (A2, A1).

Definition 2.2. The labeling of a vertex v of the cuboid [0, 1]p is given by the coordinates

as a binary number plus 1. Thereby there are the vertices vi, i = 1, ..., 2p. A vertex

v = (u1, ..., up), ui ∈ {0, 1}, i = 1, ..., p is called even, if the amount of ui = 1 is even or

zero, odd otherwise.

Example 2.1. Let p = 4. The vertex (1, 0, 1, 0)′ is the eleventh vertex v10+1=11, since

10102 = 1010. v11 is even, since the value 1 appears two times.

In order to keep the notation simple, we require the following simplifying definition:

Definition 2.3. Let u = (u1, ..., up)
′. The function

perm(u) =

({
u1

1− u1

}
· · ·
{

up
1− up

})
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maps to a vector of dimension 2p, whose components are the products of all possible

combinations of the elements in braces.

Example 2.2. For u ∈ [0, 1]2 we have

perm(u) =

({
u1

1− u1

}{
u2

1− u2

})
=


u1u2

u1(1− u2)
(1− u1)u2

(1− u1)(1− u2)



A natural extension of the concept of the Nelsen copula to p dimensions is given by the

following definition:

Definition 2.4 (Extension of Nelsen copula to p dimensions). For a vector u = (u1, ..., up)
′ ∈

[0, 1]p, θ = (θ1, ..., θq)
′, and q = 2p we have

Cθ(u) =

p∏
i=1

ui

(
1 + 〈θ,perm(u)〉

p∏
i=1

(1− ui)

)
(2)

with 〈x,y〉 =
∑p

i=1 xiyi for x = (x1, ..., xp)
′ respective y = (y1, ..., yp)

′ as a natural

extension of the Nelsen copula to p dimensions.

An important property of the Nelsen copula is given by the following lemma:

Lemma 2.2. For the density function cθ(u), u = (u1, ..., up)
′, θ = (θ1, ..., θq)

′, q = 2p

it holds, that

cθ(vi) = 1 + a(vi)θi, i = 1, ..., 2p,

with

a(vi) =

1, if vi is an even vertex

−1, if vi is an odd vertex
.

The parameter θi is called associated with the vertex vi.

Even though the Nelsen copula has several dependence parameters, the characterization

of independence is unique. The latter is shown by the following proposition:
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Proposition 2.1. The Nelsen copula is equal to the independence copula iff θ = 0.

Proof. Inserting θ = 0 directly in the definition 2 results in

C0(u) =

p∏
i=1

ui = Π.

Let w.l.o.g. be θ1 from θ = (θ1, ..., θq)
′ unequal to 0. Due to lemma 2.2 the value

that the density function attains in vertex v1 is unequal to 1. Hence, Cθ(u) is not the

independence copula.

Corollary 2.1. The copula Cθ(u) is well-defined for p ≥ 2, if the pair of parameters

(θ′, θ′′) associated to the vertices of every two dimensional edge of the cuboid [0, 1]d lie

in the set

S := [−1; 2]× [−2, 1] ∪
{
θ′′

2 − θ′ θ′′ + 3 θ′′ + θ′
2 − 3 θ′ ≤ 0

}
(3)

Proof. C(u1, ..., ui−1, 0, ui+1, ..., up) = 0 is true since if any ui = 0 the first product in

(2) and hence the whole expression gets 0.

C(1, ..., 1, ui, 1, ..., 1) = ui is true since the second product is zero for at least one occur-

rence of 1 and therefore the whole parenthesis in (2).

Now it is shown that the density function does only attain nonnegative values. The

minimum of the density function is attained at a vertex or an edge. If the restriction

1 + a(vi)θi ≥ 0. (4)

holds for all parameters θi, i = 1, ..., 2p, all vertices always have nonnegative function

values.

Let ei be an arbitrary, twodimensional edge of [0, 1]p with the respective vertices v′ and

v′′, w.l.o.g. ei = (0, ..., 0, u, 1, ..., 1) with v′ = (0, ..., 0, 0, 1, ..., 1) and v′′ = (0, ..., 0, 1, 1, ..., 1)

resp. the associated parameters θ′ and θ′′. Then we have

cθ(ei) = (3θ′ − 3θ′′)2u2 + (2θ′′ − 4θ′)u+ θ′ + 1. (5)
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For θ′ > θ′′ the minimum of (5) is greater than 0 if

−1

3

θ′2 − θ′ θ′′ + 3 θ′′ + θ′′2 − 3 θ′

θ′ − θ′′
≥ 0.

The latter expression implies, that the pair (θ′, θ′′) needs to satisfy the ellipsoid inequality

θ′
2 − θ′ θ′′ + 3 θ′′ + θ′′

2 − 3 θ′ ≤ 0.

For 0 < θ′ ≤ θ′′ and θ′ ≥ −1 resp. θ′′ ≤ 1 the density function cθ(ki) is concave and the

minimum is either attained at v′ or at v′′ and is in either case nonnegative.

In the remaining black area in figure 2 one has θ′ > θ′′ and therefore cθ(ki) is a con-

vex parabola. Although the minimum has in this case a negative value, it is attained

outside of the interval [0, 1], and the nonnegativity of (5) at both vertices implies the

nonnegativity on [0, 1].

The linear locally optimal rang tests for copulæ from Guillén and Isabel (1998) and

Genest and Verret (2005) have been developed for θ ∈ R. Conversely, the Nelsen Copula

is equipped with 2p parameters. In order to transfer the required concept of positive

quadrant dependency to dimensions p > 2, firstly an auxiliary copula is defined:

Definition 2.5. Let Cθ[k] be the generalized Nelsen copula of dimension p from definition

2.4 with

θ[k] = (0, ..., 0︸ ︷︷ ︸
k−1

, θk, 0, ..., 0︸ ︷︷ ︸
q−k

).

Cθ[k] has only one remaining parameter and is called k-reduced Nelsen copula of dimen-

sion p.

The rules of admissibility for the k-reduced Nelsen copula are even simpler than in the

general case:

Lemma 2.3. For k = 1, ..., p, the k-reduced Nelsen copula is well-defined for θk ∈ [−1, 3],

if vk is an even vertex and θk ∈ [−3, 1] if vk is an odd vertex.

Proof. Follows from corollary 2.1 when one of the parameters is taking the value 0.
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Clearly, the k-reduced Nelsen copula itself will not find application in practical work

since it can only consider dependencies in the single vertex k. However, a joint analysis

of all vertices can be used to determine a deviation from independence.

Therefore, in the following section the concept of locally optimal rank tests with one

parameter of dependence is extended to p dimensions.

3 Multivariate locally optimal linear rank tests

Sklar’s theorem (Sklar (1959)) states that a copula describes the functional relation

between continuous marginal distributions and the joint distribution of several random

variables in a unique manner. For C(u1, ..., up) = Π(u1, ..., up) =
∏p
i=1 ui, the joint

distribution is equal to the product of the margin distributions – the respective random

variables are stochastically independent. Hence, a simple idea for a test of independence

is to examine whether the empirical dependency structure of a sample of size n and

dimension p corresponds to an independence copula of dimension p. In this section,

the tests based on bivariate copulæ, developed by Guillén and Isabel (1998) and Genest

and Verret (2005), are generalized to p dimensions. An important requirement is the

generalization of the concept of positive quadrant dependency to higher dimensions:

Definition 3.1 (Positive orthant dependency of Joe (1997)). A distribution function

H(x), x = (x1, ..., xp)
′ ∈ Rp with margins Xi ∼ Fi(xi) is called positive lower orthant

dependend (PLOD), if

H(x)−
p∏
i=1

Fi(xi) ≥ 0 for all xi ∈ R, i = 1, ..., p.

A copula is called PLOD, if C ≥ Π, where Π denotes the independence copula. If C is

parametrized by θ ∈ R, θ′ > θ ⇒ Cθ′(u) ≥ Cθ(u) for u ∈ [0, 1]p can be derived by PLOD.

To keep the notation simple, another simplifying definition is required:

Definition 3.2. Let u = (u1, ..., up)
′ and c = (c1, ..., cp)

′. Then it is, that

pow(u, c) = (uc11 , ..., u
cp
p )′ and powπ(u, c) =

p∏
i=1

ucii .

10



The following lemma ensures the PLOD property for the k-reduced Nelsen copula:

Lemma 3.1. The k-reduced Nelsen copula from Definition 2.5 is PLOD.

Proof. Let θ′k > θk. Let vk be the vertex associated to θ′k resp. θk. Then we have

Cθ′[k]
(u1, ..., up)− Cθ[k](u1, ..., up) =

(θ′k − θk︸ ︷︷ ︸
>0

)× powπ(u,vk)︸ ︷︷ ︸
≥0

×powπ(1− u, 1− vk)︸ ︷︷ ︸
≥0

×
p∏
i=1

ui(1− ui)︸ ︷︷ ︸
≥0

≥ 0, (6)

where 1− x = (1− x1, ..., 1− xp).

Now the concept of locally optimal rang tests from Guillén and Isabel (1998) and Genest

and Verret (2005) shall be generalized to p dimensions. Note, that until know indepen-

dence is still characterized by one single parameter.

Definition 3.3 (LoR test). Let Mα be the set of all rank tests with level α. Let

X1, ...,Xn be i.i.d. continuous random variables of dimension p. A test Topt for the

hypotheses

H0 : θ = θ0 = 0 vs. H1 : θ > θ0 (7)

is called locally optimal rank test (LORT)

∀T ∈Mα ∃ ε > 0 ∀ 0 < θ < ε : 1− βTopt(θ) > 1− βT (θ)

The requirements for proposition 3.1 are:

A1 The parameter space Θ is a closed interval and there exists a θ0 ∈ Θ, such that

Cθ0(u) = Π(u) =
∏p
i=1 ui.

A2 The family Cθ is PLOD.

A3 For all θ ∈ Θ, Cθ and the respective density function cθ(u) are absolutely contin-

uous in θ for all u ∈ (0, 1)p.
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A4 ċθ(u1, ..., up) :=
∂cθ(u1,...,up)

∂θ is continuous in an environment around θ0 with respect

to θ and it holds, that

lim
θ→θ0

∫
(0,1)p

|ċθ(u1, ..., up)|dui1 · · · duip <∞,

for all {i1, ..., ip} ∈ Sp, where Sp denotes the set of all permutations of {1, ..., p}.

Proposition 3.1 (Generalization of proposition 1, Genest and Verret (2005)). Let Ri =

(R1i, ..., Rpi), i = 1, ..., n be the ranks associated with a sample U i = (U1i, ..., Upi),

i = 1, ..., n where Uji are i.i.d. uniform distributed random variables. Let U i be from a

population that follows a copula from the class Cθ satisfying the requirements A1 to A4.

Then the following test statistic T ∗n is LORT of the level of significance α:

T ∗n =
1

n

n∑
i=1

T (R1i, ..., Rpi), (8)

with

T (r1, ..., rp) = E

[
∂

∂θ
log cθ(Br1 , ..., Brp)

∣∣∣∣
θ=θ0

]
,

where Bri, i = 1, ..., p are independent random variables with Bri ∼ β(ri, n− ri + 1).

Proof. Straightforward generalization to p dimensions of the proof in Guillén and Isabel

(1998), Genest and Verret (2005) in the sense of Shirahata (1974) for q = 1.

In order to show the asymptotic normality of (8), we need the following lemma:

Lemma 3.2. Let ϕ(u1, ..., up) be element of L2([0, 1]p) and continuously differentiable.

Then

lim
n→∞

E
[
(aϕn(Rn11, ..., Rn1p)− ϕ(U11, ..., U1p))

2
]

= 0

where

aϕn(i1, ..., ip) = E [ϕ(U11, ..., U1p)|Rn11 = i1, ..., R1p = ip] .
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Proof. Along (Hájek et al., 1999, p. 189) with the addition, that continuously differen-

tiable functions of mensurable functions are mensurable again.

Further requirements for proposition 3.2 are:

A5 Let ċθ0 be such that for all u = (u1, ..., up) ∈ (0, 1)p we have:∫ 1

0
ċθ0(u1, ..., up)dui = 0, i = 1, ..., p and

∫
[0,1]p

ċθ0(u)du ≥ 0.

A6 ċθ0 can be expressed by a finite sum of squared integrable functions that are mono-

tone in every argument and it holds:

E
[
ċθ0

(
R1i

n+ 1
, ...,

Rpi
n+ 1

)
ċθ0

(
R1j

n+ 1
, ...,

Rpj
n+ 1

)]
= o

(
1

n

)
, i 6= j,

Proposition 3.2 (Generalization of proposition 2, Genest and Verret (2005)). If ċθ0
satisfies the requirements A5 and A6,

√
nT ∗n converges to a normal distribution with

expectation 0 and variance σ2(ċθ0) if the H0 hypothesis is true, where

σ2(ċθ0) =

∫
(0,1)p

|ċθ0(u)|2 du.

Further T ∗n and the statistic

Tn =
1

n

n∑
i=1

ċθ0

(
R1i

n+ 1
, ...,

Rpi
n+ 1

)

are asymptotically equivalent.

Proof. Following (Behnen, 1971, theorem 1) using the lemma 3.2.

Example 3.1. We discuss the bivariate k-reduced Nelsen copula from definition 2.5 (see

Figure 1) for k = 1:

CA1(u1, u2) := u v +A1(1− u1)2 u1 (1− u2) u22 (9)
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for A1 ∈ [−3, 1] and u, v ∈ [0, 1]. CA1 satisfies the properties A1 - A6, therefore the test

based on the statistic

Tn =
1

n

n∑
i=1

(
R1i

n+ 1
− 1

) (
3R1i

n+ 1
− 1

)(
2− 3R2i

n+ 1

)
R2i

n+ 1
(10)

is LORT for (9).
√
nTn is asymptotically normal distributed with expectation 0 and

variance 4
225 . H0 from (7) is rejected at a significance level α if tn ≥ λ1−α.

The LORT from proposition 3.1 is only locally optimal if the alternative hypothesis is

the k-reduced Nelsen copula, meaning that a deviation of θk from zero can be detected.

This finding implies the detection of a deviation of the empirical copula in the vertex vk

and the independence copula. Hence, in order to obtain a test of global independence

that considers deviations in all vertices, one has to analyze all test statistics of all k

reduced Nelsen copulæ simultaneously for k = 1, ..., q.

Proposition 3.3. Let B = (B1, ..., Bp) be a p dimensional random vector with Bi ∼
β(ui, n−ui+1), i = 1, ..., p. A nonparametric, p-dimensional rank test for independence

based on the copula from definition 2.5 is given by

T = nT ′p,nΣ(ċθ0)−1T p,n
a∼ χ2(q) (11)

with

T p,n = E

[
∂

∂θ
log cθ(B)

∣∣∣∣
θ=θ0

]

and

Σ(ċ0)i,j =

∫
[0,1]p

(
∂cθ(u)

∂θi

∣∣∣∣
θ=0

)
×
(
∂cθ(u)

∂θj

∣∣∣∣
θ=0

)
du

for i, j = 1, ..., q.

Proof. Proposition 3.2 states that every component of T p,n is asymptotically normal

distributed. The general central limit theorem together with lemma 3.2 provides the

joint normal distribution of the vector T p,n with expectation µ = 0, covariance matrix

Σ(ċ0). Hence, it follows that T is χ2 distributed with q degrees of freedom.
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Example 3.2 (Test of independence for a bivariate sample). For p = 2 we have under

the null hypothesis H0 : θ = θ0 = 0 that

T 2,n =E

[
∂

∂θ
log cθ(Br1 , Br2)

∣∣∣∣
θ=θ0

]

=



1
n

∑n
i=1

(
R1i
n+1 − 1

) (
3R1i
n+1 − 1

) (
2− 3R2i

n+1

)
R2i
n+1

1
n

∑n
i=1

(
R1i
n+1 − 1

) (
3R1i
n+1 − 1

) (
R2i
n+1 − 1

) (
3R2i
n+1 − 1

)
1
n

∑n
i=1

(
3R1i
n+1 − 2

)(
3R2i
n+1 − 2

)
R1i
n+1

R2i
n+1

1
n

∑n
i=1

R1i
n+1

(
3R1i
n+1 − 2

) (
1− 3R2i

n+1

) (
R2i
n+1 − 1

)


is normal distributed with expectation µ′ = (0, 0, 0, 0)′ and

Σ(ċ0)i=1...4,j=1...4 =


64 −16 −16 4

−16 64 4 −16

−16 4 64 −16

4 −16 −16 64


−1

.

Therefore, we have

T = nT ′nΣ(ċθ0)−1T n
a∼ χ2(4)

and H0 is rejected at a level of significance α, if t > q1−α;χ2(4).

A more detailed examination of the test of proposition 3.3 shows that the statistic

measures the sum of the squared deviations from zero of θi, i = 1, ..., 2p. Lemma 2.2

states that this is exactly the deviation between the empirical dependency structure and

the independence copula in the respective associated vertices vi, i = 1, ..., 2p. Therefore,

it is actually tested whether the joint occurrence of p combinations of extreme high or

low ranks occur more or less often than in the case of independence.

The vector tp,n could find a possible application to financial stock market data, where

a certain pattern of joint extreme directions of the returns is desirable i. e. to identify

a portfolio that has an opposing movement of its partial returns out of a pool of many

assets.

The following section illustrates the theoretical findings of T in a short simulation study
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and compares its power to other nonparametric tests.

4 Application

In this section an implementation in the language R (R Core Team (2015)) is provided and

compared by means of power and calculation time to several other nonparametric rank

tests of independence. The main focus thereby is the implementation of an dependogram

mimicking Genest and Rémillard (2004), which tests simultaneously for every possible

partial dependency.

4.1 Dependogram

Definition 4.1 (Dependogram). The initial point is a sample from a p-variate distribu-

tion with w.l.o.g. uniformly distributed margins. The dependogram provides (graphical)

information if every partial sample, indexed by

P>1({1, ..., p}) = {U ⊆ {1, ..., p} : |U | > 1}, (12)

is stochastically independent by calculating and plotting all test statistics T and critical

values of the Nelsen test applied to every partial sample. Thereby, the level of significance

α is corrected via Bonferroni correction – all in all one has to perform 2p − p− 1 tests.

Initially, the dependogram has been introduced by Genest and Rémillard (2004) and

used a test statistic that is based on a Cramer-von Mises distance between the empirical

copula by Deheuvels (1979) and the independence copula. An implementation to create

a dependogram is available by the command dependogram provided by the R package

copula (Hofert et al. (2015), Yan (2007), Kojadinovic and Yan (2010) and Hofert and

Mächler (2011)).

Note that the distribution of the used test statistic has no closed form expression under

the null hypotheses which implies that the critical values have to be obtained via Monte-

Carlo simulation for every sample size n and dimension p. Since the effort in the sense of
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calculation time is huge, the application of this method can be cumbersome, especially

for large sample sizes and/or higher dimensions.

The implementation of the dependogram based on the Nelsen test is now introduced and

its usage presented exemplarily by a dependency structure used in Genest and Rémillard

(2004). Information about the required calculation time is provided in section 4.3.

Figure 3: Dependogram based on the test statistic of Genest and Rémillard (2004)
from the R package copula.

Figure 4: Dependogram based on the Nelsen test statistic T from equation (11).
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Example 4.1 (Application on the example of Genest and Rémillard (2004)). Let x be

a 5-variate random sample of a multivariate random variable with an identity matrix as

covariance matrix. The dependency structure is obtained by:

x <- matrix(rnorm(500),100,5)

x[,1] <- abs(x[,1]) * sign(x[,2] * x[,3])

x[,5] <- x[,4]/2 + sqrt(3) * x[,5]/2

The figures 3 and 4 show the dependogram of the two R functions applied to an example:

Both reject the null hypothesis for the pairwise test on {4, 5} and the triple test of {1, 2, 3}
whereas the global hypotheses of all 5 samples would not have been rejected. Even if the

global hypothesis would have been rejected, the finding of the partial dependencies allows

a deeper insight into the relationship between the variables.

4.2 Comparison of power

In a simulation study it shall be investigated how the Nelsen test performs in comparison

to the test of Genest and Rémillard (2004) (ff. Genest test) and a third test, based on a

multivariate version of Spearman’s ρ by Schmid and Schmidt (2007) (ff. Schmid test).

Definition 4.2 (Multivariate version of Spearman’s ρ by Schmid and Schmidt (2007)).

Let Xi1, ..., Xin be an i.i.d. sample of a p variate population, i = 1, ..., p. A version of

the generalization of the correlation coefficient by Spearman is given by

ρ1,p = h(p)

(
2p
∫
[0,1]p

Ĉn(u)du− 1

)
=

= h(p)

2p

n

 n∑
i=1

p∏
j=1

(
1− Rij

n

)− 1


whereas Rij denotes the rank of Xij in Xi1, ..., Xin. The distribution of ρ1,p itself is

dependent on the dimension p and the sample size n under the null hypothesis and needs

to be determined via simulation.

The power is compared in N = 1, 000 iterations for the case p = 5 for samples from a

Gumbel and a Joe copula for various sample sizes n. To determine the critical value a
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Monte-Carlo simulation with N = 1, 000 iterations has been carried out under the null

hypothesis. This is the default in the package copula.

The magnitude of the dependency is held constant for both alternatives by choosing the

parameter such that it results in τ = 0.07. Table 1 gives an overview on the simulated

values: For every partial sample P2,P3 and P4 only one representative subset-index is

stated. Please note that a greater value of τ results in a higher power for all of the three

tests and converges very quickly to 1. Therefore only τ = 0.07 is presented in table 1.

Table 1: Power of the Nelsen, Genest and Schmid test under H1: Gum-
bel/Joe copula with τ = 0.07, N = 1, 000 repetitions

Gumbel Joe

n\subset 12 123 1234 12345 12 123 1234 12345

Genest

50 0.01 0.01 0.01 0.05 0.31 0.13 0.62 0.85

100 0.02 0.01 0.03 0.10 0.74 0.49 0.95 0.99

200 0.05 0.02 0.06 0.21 0.98 0.95 1.00 1.00

500 0.18 0.07 0.22 0.52 1.00 1.00 1.00 1.00

Nelsen

50 0.00 0.01 0.11 0.23 0.00 0.01 0.15 0.31

100 0.01 0.03 0.19 0.38 0.01 0.08 0.32 0.57

200 0.04 0.09 0.34 0.61 0.04 0.20 0.58 0.82

500 0.15 0.29 0.71 0.91 0.23 0.62 0.93 0.99

Schmid

50 0.12 0.15 0.18 0.21 0.10 0.14 0.13 0.12

100 0.14 0.26 0.38 0.41 0.14 0.22 0.29 0.28

200 0.28 0.49 0.59 0.62 0.28 0.42 0.47 0.45

500 0.59 0.86 0.95 0.96 0.56 0.78 0.87 0.88

If the true distribution of the sample is the Gumbel copula, the Nelsen test has a greater

power than the test of Genest for elements of P>2 with minor differences for P2. However,

up to one exception both, the Nelsen and the Genest test, are dominated by the Schmid

test for P≤4. Merely for P5 the values of the power of the Nelsen test and the Schmid

test nearly coincide.
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Further, if the true distribution is the Joe copula, the results are diametrically different.

The Schmid test dominates the Nelsen test for elements of P2 and P3 as against the power

is greater for the Nelsen test for elements of P>3. However, both tests are dominated by

the Genest test that has the highest power for all subsets and sample sizes. Note, that

all examined tests could hold the level of significance α = 0.05 quite well.

Since even this simple situation cannot determine an uniquely best test, it shall be

concluded that there are situations in which the Nelsen test outperforms the Schmid

and the Genest test in the sense of greatest power. A broader class of alternatives can

identify further alternatives under which each of the introduced tests is favorable.

Concluding, it shall be mentioned that the described effects are nearly the same for all

sample sizes. A large loss in power due to the use of an asymptotic distribution instead

of the unknown finite sample distribution has not been detected.

4.3 Calculation time

This section discusses the required calculation time with respect to dimension p and

sample size n. Since the variances of the distributions of the test statistics of the Genest

and the Schmid test contain a Brownian bridge, their quantiles cannot be calculated

directly – they have to be determined via a preceded simulation for every constellation

of p and n. Both, quality of the derived critical values and the required calculation time

are augmenting with increasing amount of iterations (the default setting in the package

copula is N = 1, 000). In addition to that, it is obvious that the required calculation

time increases for larger sample sizes and higher dimensions.

Although only the asymptotic distribution of the Nelsen test statistic T is known, it is

provided in a closed form expression. For small sample sizes the error of approximation of

the critical value can be large. However, with increasing sample size this error diminishes

as table 1 suggests. Since the dimension p only has an influence on the degrees of freedom

needed to determine the critical value of an univariate distribution, the dimension has

virtually no influence on the required calculation time for the critical value compared to

the other nonprametric tests. Nevertheless, p influences the time that is needed to make

a test decision because one needs to generate a function that evaluates the vector of test
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statistics of length 2p.

Table 2 gives an overview on the calculation time that is required in order to perform

a test. Obviously, the time that is needed to simulate a critical value is increasing

exponentially as the sample sizes or the dimension rises. Especially for large sample

Table 2: Calculation time in seconds (except as noted otherwise) that is
needed to make a test decision. Genest: Time to simulate a critical
value. Nelsen: Time to generate the calculation routine.

Calculation time Genest Nelsen

n 25 50 100 200 500 ∞

p

2 0.06 0.07 0.15 0.58 3.80 0.00

3 0.04 0.11 0.33 1.29 17.74 0.00

4 0.09 0.20 0.67 2.78 48.48 0.00

5 0.17 0.45 1.62 6.53 132.56 0.00

6 0.33 1.00 3.82 14.83 321.15 0.04

7 0.70 2.23 8.91 34.31 767.48 0.14

· · · · · · · · · · · · · · · · · · · · ·
13 15 1 2 m1 20 m1 1 h1 5 d1 23 m

1 Extrapolated

sizes it gets clear that the time needed to simulate the critical values for the Genest

test plays an important role for actual applications. Likewise, the performance time

augments for the Nelsen test with higher dimension p – hereby the bottleneck is to

generate a function that evaluates the 2p dimensional test statistic and the required

covariance matrix. But once this is done, the actual calculation time is barely influenced

by the sample size n. The Nelsen test rather profits of increasing sample sizes since the

error of approximation is shrinking. The time provided in table 2 is the run-time needed

in R in order to generate the routine that can be used to calculate the vector of test

statistics tp,n. Once the function is generated the actual calculation time is negligible.

Thus, the Nelsen test can be a valid alternative in situations where the time it lasts

to perform a test of independence is relevant. This finding is especially important if

the sample size is varying, which would require several cumbersome simulations of the

critical values of other nonparametric tests, or if the sample size is very large.
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5 Summary and Outlook

In this article, a nonparametric multivariate rank test for independence has been devel-

oped. Basis for the test has been an extension of bivariate locally optimal rank tests to

p dimensions. In a next step, the bivariate Nelsen copula with 4 parameters has been

extended to dimension p with 2p parameters that characterize independence in an unique

manner.

Based on this generalization, a simple test of independence has been developed. Its key

feature is an asymptotic distribution that has a closed form expression. Especially when

testing p > 3 samples for independence, the introduced test appears to have an equivalent

or better performance in the sense of a higher power than other nonparametric rank

tests in the present setting. A broader simulation study considering further alternative

hypotheses could illuminate the differences of the examined tests in a more detailed

manner. If one had knowledge of the type of dependence, this would give a guideline on

how to choose the nonparametric test with the greatest power.

One key advantage of the Nelsen test is the performance for large sample sizes n, since

the used distribution is asymptotic and the the critical value is therefore not affected

by n. The introduced alternatives need a cumbersome simulation of the critical values

preceding the test. This time-consuming procedure can be omitted using the Nelsen test

which makes it attractive in areas where the computation time is crucial. The loss in

power which arises by the use of an asymptotic instead of a finite sample distribution

has been minor in the simulation.

The decoding of the violation of independence into the single vertices (e.g. the more

frequent joint occurrence of high ranks as in the case of independence) gives insight into

the nature of dependence. This finding could be used e.g. in the area of financial market

data – if one wants to build a portfolio of p assets from a pool of N assets, one could

identify the one out of
(
N
p

)
combinations that provides favorable joint movement of the

returns. In this way, one could search for a combination of assets, whose returns move

in the most diametrical of parallel manner. The former is of interest for diversification,

the latter for an investment strategy. Both shall be the subject of future research.
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