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Abstract

In this article we present both a theoretical framework and a solved
example for pricing an European gas storage facility and computing
the optimal strategy for its operation. As a representative price index
we choose the Dutch TTF day-ahead gas price. We present statistical
evidence that the volatility of this index is time-varying, so we introduce
a new continuous-time model by incorporating GARCH diffusion into
an Ornstein-Uhlenbeck process. Based on this price process we use
dynamic programming methods to derive partial differential equations
for pricing a storage facility.

As an example we apply our methodology to a storage site located
in Epe at the German-Dutch border. In this context we investigate the
effects of multiple contract types, and perform a sensitivity analysis for
all model parameters. We obtain a value surface displaying the proper-
ties of a financial straddle. Both volatility and mean reversion influence
the facility value – but only around the long-run mean of the gas price.
The terminal condition, which includes information about the contract
provisions, is of importance if it contains e.g. penalty terms for low
inventory levels. Otherwise its influence is diminishing for increasing
lease periods.

JEL-Classification: C31, C61.

Keywords: TTF gas price; GARCH diffusion; natural gas storage; dy-
namic computing.



1 Introduction

Despite the recent economic downturn, European natural gas markets recorded a
growth in traded volume by a significant 57 % in 2008 (IEA, 2009). They are,
in contrast to their North American counterparts, not yet fully liberalized, but
deregulation is in progress and several important steps to open the markets have
been taken. Diverse gas trading hubs have been established across Europe. The
most important are the British National Balancing Point (founded in 1996), the
Belgian hub in Zeebrugge (founded in 2000) and the Dutch Title Transfer Facility
TTF (founded in 2003). In Germany, the total traded volume is about equal to that
traded on the TTF. The German market is still divided into different geographic
areas (see IEA, 2009), and so the TTF day-ahead index is commonly used as a
reference for short-term prices. The Dutch exchange recently established itself as
the main continental trading hub (with physical delivery within the Dutch natural
gas grid), and comprises both spot and future markets. Liquidity has improved
substantially since 2003, especially on the day-ahead market. In particluar, Figure
2 displays the recent absence of price spikes. In addition, the volume traded on the
TTF has more than doubled from 2007 to 2008, as shown in Figure 1 and by IEA
(2009).

Independent of liquidity issues, there is significant fluctuation in both long- and
short-term gas prices. Gas is still widely used for heating purposes, so many gas
products show a distinct summer-winter seasonality. Gas is also increasingly used
for power-production (see Kiesel & Herkner, 2008). Although the fuel is expensive,
gas turbines are very flexible and are therefore mainly switched on to cover the
high demand of peak hours. This links short-term gas prices to the highly volatile
electricity market and increases their fluctuation. In contrast to electricity, natural
gas can be stored and adequate storage facilities can be utilized to reduce volatility.
In Germany, gas is stored in depleted oil & gas reservoirs or salt caverns. In areas
where this is not possible, aquifers are developed as expensive but adequate substi-
tutes. Storing gas in liquid state (LNG gas) is also becoming an issue as technology
advances (see e.g. IEA, 2009).

Storage facilities play an important financial, social and political role in Europe.
They reduce the seasonal gas price pattern and guarantee the supply of gas for
winter heating (see Figure 3). They also serve as strategic reserves for events like
the recent dispute between Russia and the Ukraine about the price for natural gas,
during which the amount of gas delivered to Germany was significantly reduced
(IEA, 2009).

The way a gas storage facility can be used strongly depends on its operational
characteristics. Each type requires a certain amout of base gas that remains unre-
trievable in the facility and is required to maintain a certain level of pressure. More
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important are the injection/withdrawal and cycling rates. Both the injection and
the withdrawal rates depend on the pressure inside the storage which in turn de-
pends on the fill level. The cycling rate quantifies how many times a year gas can be
withdrawn or injected. Depleted oil reservoirs have a low injection/withdrawal rate.
They are operated on a single annual cycle and used mainly for damping seasonal
patterns (for more details, see Thompson et al., 2009). Salt caverns allow higher
injection/withdrawal rates and can be operated multi cycle. This makes them ad-
equate for hedging spot market transactions or using them in a bundle with gas
turbines. With the increase of gas-fired power-plants the demand for these kinds
of storage is rising and capacities have been extended over the last years (see IEA,
2009).

In this new scenario of liquid short-term gas markets the storage facility becomes
a more active element. Instead of just buffering seasonality, it can also be used as a
physical hedge for options on the gas or electricity price. Such strategies offer more
profit than merely transacting on the forward market, but are far more complex and
more risky. These arguments drive the need for powerful methods to determine the
optimal strategy for operating storage facilities and their expected storage value.
In the recent years several attempts were made to answer this question (see e.g.
Thompson et al. 2009, Boogert and de Jong, 2006, or Bjerksund, 2008), however
still certain questions remain unanswered. Existing work does not capture gas prices
with dynamic volatility which is, however, a key feature of TTF spot prices. Within
this paper we intend to close this gap and find in Section 2 that using a GARCH
diffusion for volatility is adequate. In addition, various storage level arrangements
have different terminal provisions, and existing works ignore these distinctions. We
also adress this point in the current work.

For pricing the storage facility itself, real options theory suggests computing the
facility value as the expected value over all (discounted) future cash flows (see Dixit
& Pindyck, 1994). Monte Carlo simulations or the binomial tree method can be
applied as numerical tools, but both have some shortcomings, which leaves us with
partial differential equations (PDEs). A pricing algorithm which respects dynamic
volatility is developed. We do also analyze the effects of other price parameters
on the storage value and especially see a siginificant influence of the size of mean
reversion. Our algorithm describes the scenario of a limited-time storage lease.
Costs of withdrawal/injection as well as lease period and terminal condition are core
elements of any lease contract. To show the effects of contract terminal conditions,
we compute the sensitivity of lease values to some common contract specifications.

The paper is structured as follows: The basis for every storage pricing algorithm
is an adequate spot-price model. In Section 2 we suggest such a model for recent
TTF data. Subsequently an overview of different storage pricing methods is given
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Figure 1: The Volume at TTF

The solid (dashed) line represents the traded (physical) volume (Gas
Transport Services, 2010).

in Section 3. In Section 4, we apply our method to the storage facility in Epe.
The focus of our analysis lies on evaluating the influence of dynamic volatility and
of different contract features on the storage value. A brief summary concludes the
paper.

2 The TTF Day Ahead Gas Price

Recent literature suggests different models for a short-term gas price process. Thomp-
son et al. (2009) propose using a jump-diffusion process. In theory they allow for
dynamic volatility, however, eventually, when deriving the gas storage value, they
require the volatility to be constant. Boogert & de Jong (2006) propose a mean
reverting diffusion with constant volatility. Chen & Forsyth (2010) do the same and
add seasonality to the long-term equilibrium price. Bjerksund et al. (2008) criticize
the simplicity of the mentioned models and construct a complex model based on a
principal component analysis. Cartea & Williams (2008) refine the basic bivariate
model for commodity prices of Schwartz & Smith (2000) by adding a seasonal com-
ponent. This approach splits the log-prices into a long-run Brownian motion with
drift and a short-term mean-reverting term. The individual processes are correlated.

Based on a TTF day-ahead time series data set (provided by the APX Group) we
investigate whether one of the above models fits the data. In Figure 2 we clearly see
a structural break in about 2006 after which large spikes disappear. Therefore we
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Figure 2: The TTF Day-Ahead Price

consider a regime-switching model in the form of a jump component added to the
process as inadequate. The approach of Bjerksund et al. (2008) is too complicated
for most practical applications and – in contrast to Cartea & Williams (2008) who
analyzed the UK day-ahead gas price index – we cannot find a significant seasonal
pattern in the day-ahead prices. Moreover, the time series is too short to effectively
realize the advantages of their two-factor model.

So, as we excluded almost all mentioned approaches, we decide to stick to the
world of stochastic models and begin with fitting a simple mean reverting Ornstein-
Uhlenbeck process to the data (similar to Thompson et al., 2009). We find a mean
reversion and looking at the identified residuals we see that volatility is not constant
over time. One way to achieve this for discrete time series is to use generalized
autoregressive conditional heteroskedastic (GARCH) models in which the volatility
follows an autoregressive process (Bollerslev 1986 and Engle 1982). Under weak
conditions, Drost & Werker (1996) derive a continuous time limit of GARCH. We
make use of their result to formulate this model:

dPt = λ(µ− Pt)dt+ σtdW
(1)
t , (2.1)

dσ2
t = θ(ω − σ2

t )dt+
√

2ηθσ2
t dW

(2)
t ,

where λ ∈ R denotes the long-term rate of mean reversion and µ ∈ R denotes the
long-term mean. The stochastic components W (1),W (2) are independent standard
Brownian motions, ω > 0, θ > 0 and η ∈ (0, 1). Using maximum likelihood esti-
mation we find the following parameterisation to best fit the TTF day-ahead prices
starting from Sept 2nd 2006 and ending Sept 9th 2009:

dPt = 0.01(17.76− Pt)dt+ σtdW
(1)
t , dσ2

t = 0.01(5.26− σ2
t )dt+ 0.31σ2

t dW
(2)
t .
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Figure 3: The Monthly German Gas Storage Balance

Source: FMET (2010).

We see that both the price itself and the volatility have a quite small mean reversion.
The long-term mean lies around 18 EUR/MWh with a long-term volatility of little
more than 2 EUR/MWh.

For computing the storage price, a risk neutral version of (2.1) is required. The
martingale measure equivalent to (W (1),W (2)) is again a Brownian motion, but we
must adjust the long-run mean (of both price and volatility) by constant risk premia.
A common method to quantify these premia involves estimating forward prices. The
TTF market, while more liquid than others on the European continent, nonetheless
provides insufficient data for this estimation. Guo (1996) and Stein & Stein (1991)
solve this problem by simply assuming the premia to be zero. We adress this issue
in Section 4.3 where we study the effect of reducing both long-run means on the
storage value.

3 Pricing a Gas Storage Facility

The operational strategy of a storage is to a large part determined by its injection
and withdrawal rates. The more flexible a storage the bigger the variety of possible
strategies. In Germany so far mainly forward-based strategies, wich aim to benefit
from the seasonal pattern, were applied – as shown by the monthly aggregated
storage balance depicted in Figure 3. This is, however, suboptimal for storages with
high injection/withdrawal rates. At the TTF forward market the tradable months or
quarters are highly correlated and volatility is relatively low. The spreads between
different months are therefore relatively small, as are the profits made by establishing
static hedges between forwards of different maturities. Profits may be increased by
dynamic hedging on the spot market, where a larger volatility is observed.
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Beyond that it is possible – if physical properties allow – to obtain even more
profit from reacting to short-term price fluctuations (e.g. in form of options trading)
and using the storage as a physical hedge. This strategy, however, is more risky and
far more complex than a future-based one. On the other hand – and this holds
especially for emerging markets like the gas market – if there is no liquid forward
market, it might be impossible to operate the optimal forward-based strategy.

For these reasons we decide to price a storage based on spot-market operations.
For this purpose we provide a brief introduction into different valuation methods.
Subsequently we derive our valuation method and adress the numerical techniques
which arise.

3.1 A Review of Methodologies

There are three different methods of gas storage valuation: Monte-Carlo simulation,
binomial trees and PDE techniques. The advantage of the first is that the price
process and the optimal strategy are separated. This makes it easier to test and
use different price models, especially when applying other stochastic factors than a
Brownian motion or Poisson jumps. However, simulating prices leads to instabil-
ities in the storage value, which makes it hard to compute the effect of instantly
injecting/withdrawing gas on the future value. Therefore it is quite difficult to find
a stable optimal control strategy with Monte-Carlo simulation. Advanced methods
like Least Squares Monte Carlo, applied e.g. by Boogert and de Jong (2006), solve
this problem, but this technique again evokes further questions. One is the problem
of choosing a set of basis functions for the regression. This is difficult for higher
dimensions and is a source for further approximation errors.

The binomial tree method can be considered as a numerical translation of for-
ward differencing, which is a technique to solve PDEs (see e.g. Hull, 1999). Its
main problem is, that it requires large computational resources. This demand is
dramatically rising when increasing the spatial dimension. Besides that it is hard
to incorporate flux limiters, which are necessary to cope with the arising hyperbolic
equations.

This leaves us with the PDE technique. If implemented adequately these rel-
atively fast standard techniques are able to handle hyperbolic equations. Further-
more, when starting from the Bellman equation, we have a necessary and sufficient
condition for an optimal solution. However, as the derivation involves Ito’s Lemma,
we are restricted to Brownian motion based processes (possibly including Poisson
jumps). In the subsection below we will use this method to derive a gas storage
pricing scheme based on the price model found in Section 2.
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3.2 Gas Storage Pricing via Dynamic Computing

We now generalize the approach of Thompson et al. (2009) to dynamic volatility
and derive the required PDEs in order to price a gas storage. We first define the
parameters used in the sequel: Let P be the current natural gas price, T the terminal
time and I the current amount of stored (working) gas with boundaries Imin, Imax.
The central variable is the control c(I, P ), which is the amount of gas currently
released (c > 0) resp. injected (c < 0). The boundaries of c(I,P) vary with I
because of the relation between I and the internal reservoir pressure (see B), and
are denoted by cmin(I) and cmax(I). Eventually we introduce a(I, c) which serves
as a parameter to collect the different costs occuring while operating the storage,
i.e. costs for injection/withdrawal or costs due to leakages. Constant costs such as
the general storage capacity and connection lease may be ignored as they do not
influence the optimization process. Yet this definition still offers various options.
Thompson et al. (2009) used

a(I, c) =

 0 for c ≥ 0.

K for c < 0,
(3.1)

with K > 0. We can also design the costs of injection as a linear function with a
factor h > 0 and

a(I, c) =

 0 for c ≥ 0,

−h · c for c < 0.
(3.2)

Both the injection and the withdrawal of gas causes costs, but it is a common design
in practice to charge all costs when storing in (see e.g. RWE, 2010).

Having chosen a definition for each variable, the current value of the gas storage
is the discounted cash flow of all future activities until time T . The cash flow in
every time step dt with an optimal control c is simply (c− a(c, I))Pdt. Given a risk
neutral measure E [·] for both the price and the volatility process and a risk free
interest rate ρ ∈ R we can write

V (P, σ2, t = 0, I) = max
c(P,I)

E

[∫ T

0
e−ρτ (c− a(I, c))Pdτ

]
(3.3)

s.t. cmin(I) ≤ c ≤ cmax(I).

The interest rate ρ may also fluctuate in time provided it is uncorrelated with the
price process. For the price process P we use (2.1), and the change of I with
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time is simply the negative control c in time t, i.e. dI = −c · dt. Now having
introduced all variables we can start deriving the PDEs. We use methods from
dynamic programming and follow the steps proposed by Thompson et al. (2009).
We set out by identifying the storage value at time t as

V (P, σ2, t, I) = max
c(P,I,t)

E

[∫ T

t
e−ρ(τ−t)(c− a(I, c))Pτdτ

]
. (3.4)

We now split the above integral by introducing the time step dt:

max
c
E

[∫ t+dt

t

e−ρ(τ−t)(c− a(I, c))Pdτ +
∫ T

t+dt

e−ρ(τ−t)(c− a(I, c))Pdτ

]

= max
c
E

[∫ t+dt

t

e−ρ(τ−t)(c− a(I, c))Pdτ + e−ρdtV (P + dP, σ2 + dσ2, I + dI, t+ dt)

]
.

Following this procedure, we arrive at the Bellman equation

V = max
c
E
[
(c− a(I, c))Pdt+ e−ρdtV (P + dP, σ2 + dσ2, I + dI, t+ dt)

]
.

It is significant that we obtain a Bellman equation, as it can be shown that solving
this equation is equivalent to finding an optimal solution to the original problem
(Bellman, 1957). A first step towards a solution is to use an extended version of
Ito’s lemma. We get

V = max
c
E

[
(c− a(I, c))Pdt+ (1− ρdt)V + (1− ρdt)

(
Vt +

1
2
σ2VPP

+
1
2

2λθ
(
σ2
)2
Vσ2σ2 + η(µ− P )VP + θ(ω − σ2)Vσ2 − VIdI

)
dt

+ (1− ρdt)
(
η(µ− P )VPdW (1) + θ(ω − σ2)Vσ2dW (2)

)]
.

Now we eliminate every term that goes faster to zero than dt (except −ρdtV ) and
thus

V = max
c
E

[
(c− a(I, c))Pdt+ (1− ρdt)V +

(
Vt +

1
2
σ2VPP

+ λθ
(
σ2
)2
Vσ2σ2 + η(µ− P )VP + θ(ω − σ2)Vσ2 − VIdI

)
dt

+ η(µ− P )VPdW (1) + θ(ω − σ2)Vσ2dW (2)
]
.

Taking the bivariate expectation, eliminating V on both sides and dividing by dt
yields (as we deal with independent Brownian motion increments dW (1), dW (2))

maxc
[
(c− a)P − cVI − ρV + Vt + 0.5σ2VPP +

λθ
(
σ2
)2
Vσ2σ2 + η(µ− P )VP + θ(ω − σ2)Vσ2

]
= 0. (3.5)
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Only two of these terms depend on c. Thus, optimizing the equation above with
respect to c means solving

maxc [−cVI + (c− a(I, c))P ]
s.t cmin(I) ≤ c ≤ cmax(I). (3.6)

We can interprete (3.6) as follows: It is only reasonable to sell gas if the instantly
payoff is larger than the effect of reducing the inventory on the future storage value.
In this case, it is optimal to withdraw the maximum amount, i.e. cmax(I). If not, it
might be reasonable to inject gas, but only if the future payoff (reduced by the costs
of injection) surpasses the instantly costs. Then the maximal possible injection rate
is optimal. Otherwise, we remain idle. This is called a bang-bang control structure.
Having found an optimal c = copt we can rewrite (3.5) as follows:

(copt − a)P − coptVI − ρV + Vt + 0.5σ2VPP

+ λθ
(
σ2
)2
Vσ2σ2 + η(µ− P )VP + θ(ω − σ2)Vσ2 = 0. (3.7)

So, iteratively, using PDE methods, we identify in every time step first the optimal
control copt and subsequently the corresponding storage value V . Yet, in order to
solve the PDE, we have to define boundary conditions. The terminal condition has
a substantial influence on the storage value. From (3.4) follows straight forward

V (·, ·, T, ·) = 0. (3.8)

This condition has a strong implication on the control variable as it promotes gas
withdrawal within the proximity of T at almost every price level. A less extreme
condition would be

V (·, ·, T, ·) = µ · I, (3.9)

i.e. any inventory at time T will be reimbursed by the long-term average price. To
implement this in our pricing algorithm we merely have to modify the PDE at time
T − 1 and replace the value at time T by the above formula. Another scenario is
a fixed inventory level Iend at time T . A positive difference is reimbursed by the
current price and a negative difference will be billed include a prespecified penalty,
i.e.

V (P, ·, T, I) =


P · (I − Iend) if I > Iend,

ν · P · (I − Iend) if I < Iend,

0 if I = Iend,

(3.10)
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whereby ν denotes a penalty if ν > 1. RWE, for example, demands twice the market
price (see RWE, 2010).

For the price boundary condition we cite Thompson et al. (2009) and use the
argument that if P is very large/small the optimal strategy remains the same, so
the value varies linearly in P. In other words

VPP → 0 for large P, VPP → 0 for P → 0.

For the volatility boundaries we draw a comparison to option pricing. We can look
on the storage (as we see in Section 4.2) as a straddle-like mixture of a call and a
put option. Both call and put reach their maximum value for σ2 → ∞, which is
independent of σ2. In case of Vσ2 → 0 the price is almost deterministic, a small
change in volatility has almost no effect on the value of our facility. So we set

Vσ2 → 0 for σ2 →∞, Vσ2 → 0 for σ2 → 0.

This, however, does not mean that for other times the price must also be determin-
istic.

Eventually we derive our boundaries for I from the storage characteristics itself.
If the storage is full, i.e. I = Imax, we cannot inject gas and thus derivatives with
respect to I have to be computed from storage levels smaller than or equal to Imax
(and vice versa for I = Imin).

Now, having the boundaries, the storage value can be computed using a simple
explicit finite difference scheme (see e.g. Hull & White, 1990). We start at terminal
time T and work ourselves backward in time using (3.6) resp. (3.7). However, as
(3.7) is hyperbolic in I, some numerical problems arise and we address them in the
section below.

3.3 Numerical Issues

For solving the PDE’s described in (3.6) resp. (3.7) we follow again Thompson et
al. (2009) and use an explicit finite difference scheme, as well as their suggestions
to cope with instabilities. For computing both VP , VPP and Vσ2 , Vσ2σ2 we use the
central difference method. Boundary values are derivated using the above defined
boundary conditions.

A first order upwind differencing scheme (see e.g. Seydel, 2009) is applied to
derive V with respect to I in I = Imin resp. I = Imax. However, for other inventory
levels, this method is inadequate as it is inaccurate for all but very small spatial
step sizes. Therefore, Thompson et al. (2009) suggest to use a method that shows
the total variation diminishing (TVD) property introduced by Harten (1983). This
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concept limits diffusion in the solution space and therefore guarantees finite deriva-
tives. A method having the TVD property is the function minmod (see A) and we
use it in the sequel to compute VI for I ∈ (Imin, Imax).

This procedure guarantees a stable solution for the storage value V , however not
for the control as copt itself depends on VI in every time step. For this problem, we
can use the trick of Thompson et al. (2009): by deriving (3.7) again with respect to
I we get a PDE for VI , which is, as we have to deal with cI , a nonlinear maximization
problem. Now applying the same numerical tools as in (3.7) to this new equation
we obtain a stable VI and by inserting this in (3.6) a stable control c, which can
then be used in (3.7).

Eventually we want to adress the question of choosing an adequate step size for
the spatial grid. After discretizing the PDE we have for each time t an equation for
the value V as a linear-combination of values in t + 1 at different price, inventory
and volatility levels. To obtain numerical stability and convergence to a solution, we
have to demand that these coefficients vary within [0, 1). The two crucial relations
within our PDE system are

0 ≤ dt

1 + ρdt

(
1
dt
− σ2

s

(dP )2
− 2λθ(σ2

s)
2

dσ2
sdσ

2
s+1

)
< 1,

0 ≤ dt

1 + ρdt

(
λθ(σ2

s)dt
dσ2

s + dσ2
s+1

− θ(ω − σ2
s)dt

dσ2
s + dσ2

s+1

)
< 1. (3.11)

Thereby dP (dσ2
s) represents the step size of the price (volatility) and (λ, θ, ω) are

parameters from (2.1). We consider a price step of dP = 0.5 adequate and therefore
the above equation reduces to a relation between dt, dσ2 and σ2. Decreasing the
volatility step size and increasing the maximal volatility requires a substantial re-
duction of the time step size. The volatility domain is limited by the time step size
on the right side and by zero on the left side. Using this knowledge, we can identify
all adimissible pairs (σ2, dσ2). In Figure 4 these are all pairs that lie between both
lines.

4 A Realistic Scenario

Within this section we pick a gas storage facility located in Epe at the German-
Dutch border and operated by the Trianel Gasspeicher Epe GmbH & Co. KG
(Trianel). The gas is stored in salt caverns which guarantee a high injection and
withdrawal rate. Moreover, the densely populated Ruhrgebiet is little more than
100km distant and physical access to the German gas pipeline network is guaranteed.
The proximity of the TTF hub justifies use of the TTF index as the reference gas
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Figure 4: The Admissible Volatility Step Size

price and allows the assumption of liquid trading in the gas spot market. Using
this scenario we test our storage pricing algorithm. The focus lies thereby on the
influence of the parameters – especially of volatility.

4.1 The Storage Situation

The salt caverns located in Epe are Europe’s largest gas storage facility and different
operators use the caverns. Trianel itself operates several caverns with a total size
of 314 million m3 (from now on Mm3) of natural gas (LBEG, 2010). This amount
is divided into into 237M m3 working gas and 77M m3 cushion gas, which has to
be left in the cavern to supply base pressure and so cannot be retrieved (LBEG,
2009). The maximum injection rate is 3.6M m3/day and the maximum withdrawal
rate is 7.2M m3/day. The type of gas stored in the caverns is H-gas with an
approximate caloric value of 11, 5 kWh/m3 (Trianel, 2009). H-gas stands for “high
gas” consisting of 87 - 99 % methane – contrary to L-gas (low gas) which consists
of 80-87 % methane (see e.g. Cerbe, 2004).

Based on the above information we derive formulas for cmin,cmax (see B):

cmin = −36.3612

√
1

I + 77
− 1

314
, cmax = 0.4677

√
I.

For the risk free interest rate we use the interest rate for short term German govern-
ment bonds, which is currently 1% p.a. (Bundesrepublik Deutschland Finanzagentur
GmbH, 2010). We price an annual contract and use weekday TTF day-ahead prices,
i.e. one year is approximately 250 days.
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4.2 Storage Pricing with Dynamic Volatility

For pricing the storage we use the parameters fitted to (2.1) in Section 2. These
were estimated using the observed (not risk adjusted) data. The effects of a risk-
adjustment are discussed in Section 4.3. Moreover we set K in (3.1) as K = 0.1
and as terminal condition we use in the first instance V (·, ·, T, ·) = µI. With these
parameter values, we compute the storage value in time t by first solving

max
cmin(I)≤c≤cmax(I)

[−cVI + (c− a(c))11500P ]

s.t.

c =


cmax for 11500P > VI ,

cmin for 11500P < VI ∧ (cmin −K)11500P > cminVI ,

0 otherwise,

and then using this optimal c in

(c− a(c))P − cVI + Vt +
σ2

2
VPP + 0.0663

(
σ2
)2
Vσ2σ2

+0.0142(17.78− P )VP + 0.0131(6.2551− σ2)Vσ2 = ρV.

From our algorithm we obtain two kinds of information: The optimal control c
(Figure 5) and the corresponding expected maximal storage value (Figure 6) for
different price and storage levels. In the control variable’s plot we can clearly see
three regions. If the price is above the discounted long-term mean, then it is rea-
sonable to withdraw and sell the gas. If the price is below this border then - as
we have positive operational costs - there is an area where the operational costs
are higher than the benefit of injecting. As the costs are constant in this scenario,
they increase relatively to the decreasing cmin. This leads to the concave boundary
between idleness and injecting. Eventually there is an area where the price is so low
that the benefit of injection surpasses its costs.

On the value surface in Figure 6 we see a kink around the discounted long-term
mean. The value is highest for full inventory and maximum prices and lowest for
high prices and an empty storage. Having low prices and an empty storage gives
the operator the chance to buy low and eventually sell for a higher price. To reveal
further the option character of a gas storage we plot cross-sectional slices in Figure
7. For low inventory levels we see the classical shape of a put option and for high
inventory levels the shape of a call option. Between these extremes, a straddle-like
shape appears. In this case, the storage operator speculates on extreme prices. We
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Figure 5: Optimal Control Strategy

Figure 6: Expected Cash Flow

Volatility σ2 = 3.7 at t = 0.
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Figure 7: Cross-Sectional Slices of the Value Surface

The dashed line shows σ2 = 0.3 at t = 0, the solid (dotted) line
σ2 = 1.25 (2.5).
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notice that both control and value surface are similar to the results of Thompson et
al. (2009).

From the results we can also see that volatility matters (see Figure 7). increasing
the initial volatility yields a different value (but identical control) surface. The effect,
however, restricts itself to the described borders at the control surface, i.e. between
withdrawing and doing nothing resp. doing nothing and injecting. The latter effect
is of minor size (and vanishes with increasing storage lease period). This result is
reasonable, as higher volatility means more fluctuation around the critical boundary
between injections and withdrawals (or doing nothing) and thus more chances to
increase the storage value by trading. For the extreme regions, however, a stronger
price fluctuation has no influence on the control. This corresponds with the fact that
the kink around the (discounted) long-term mean becomes smoother with larger
volatility (see Figure 7). The extreme price regions, however, show no difference.

The same results can be seen when comparing the storage value of our dynamic-
volatility price model with the constant volatility model used in Thompson et al.
(2009). Dynamic volatility introduces more oscillation and creates more value along
the borders between injection, remaining idle and withdrawal (on the control sur-
face).

4.3 Further Factors Influencing the Storage Value

Not only volatility or inventory level, but also other parameters – such as the cost
function a – have a substantial influence on the storage value V . We now have a
brief look on each of these factors as summarized below:

The interest rate
Increasing the interest rate means decreasing the slope of the storage value in time.
For large interest rates, this slope can be negative, i.e. the value of the storage
is decreasing with increasing time of operating the storage. This results seems
paradoxical, but stems from the fact that future cash flows must be discounted, i.e.
the larger ρ the smaller the current value of the future cash flow. However, as ρ is
currently quite small, it is of minor importance.

The price process parameters
Changing the long-term mean µ shifts the border between withdrawal and remaining
idle along the price axis on the control surface and therefore the location of the kink
on the value surface. The kink is moved down along the price axis and the overal
storage value is lowered as well. From this analysis we can easily derive the effect
of introducing a risk premium in the price process.

The mean reversion λ has no influence on the control, but a significant influence
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Figure 8: Cross-Sectional Slices of the Value Surface for Different Levels of
Mean Reversion

The solid (dashed) line shows the value surface for λ = 0.014 (0.1).

on the value surface. The influence can be seen in Figure 8. The higher λ, the less
volatile (so the more predictable) is the price process. The storage loses some of its
option character and the value surface becomes flatter. In general (except for full
inventories and high prices) it can be said that the higher the mean reversion the
lower the storage value.

Modifying the volatility parameters, again, has no influence on the control, but
a significant impact on the value surface. Increasing ω, the long-run mean of volatil-
ity, means more fluctuation, i.e. increases the storage value – however only within
a certain area around the (discounted) long-term mean (as explained above). In-
troducing a volatility risk premium reduces ω, i.e. the fluctuation, and therefore
eventually the storage value.

Increasing the volatility’s mean reversion θ pushes the storage value around the
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(discounted) long-term mean, but has no effect for extremely low or high prices –
which is reasonable, as volatility is there of minor importance anyway. Modifying
η, which controls the amplitude of the volatility dynamics results in changing not
the control surface, but only the value surface which increases with η. The value
surface is far less sensitive to η than to other parameters, most notably θ.

The cost function a

Increasing a constant a implies the enlargement of the area where remaining idle is
optimal. The value surface is decreasing with growing K. Introducing a dynamic
cost function a of the shape (3.2) creates a linear boundary between injecting and
doing nothing independent of cmin at a price level of (1− h)/(1 + h)e−Tdtρµ, where
h is as defined in (3.2).

Terminal condition and terminal time
The terminal time – in combination with the terminal condition – influences the
shape of the control surface and the value surface, if it is below the minimum time
T required to either fill or empty the storage given any inventory level. In Scenario
(3.8) the optimal control is to withdraw always if T < T . Because the price processes
are mean reverting, increasing T and price increases the probability of a fall in spot
price, and the attractions of the strategy of selling current inventory and replacing
it later. This area on the control surface grows until – if T surpasses T – the control
surface is equal to scenario (3.9) which is independent of T.

With increasing T the effect of the terminal condition on the value surface is
diminishing, as we can see in Figure 9, which shows two important results. In the
left hand figure we see that the conditions (3.8) and (3.9) converge, and that the
influence of the initial inventory level is decreasing in time. The right hand figure
proves that the dynamics of the facility are much more important than details of
e.g. lease period or initial fill level. This result can be observed even for short
lease periods (7 days, i.e. 56 iterations, are enough). Higher price volatility of spot-
markets is one argument in favour of an option-based operational storage strategy,
but Figure 9 indicates that simply the fact of being more active than in a forward-
based strategy is another major reason for yielding higher benefits from our facility.

The case of (3.10) is a bit more complicated, especially when T < T (see Figure
10). Eventually, for the lease period of one year we have the following situation:
it is optimal to inject, if I < Iend and T is below the time needed to reach the fill
level Iend. With increasing T and the higher the price the bigger the probability
that prices fall and one can make profit by selling high and buying low. Eventually
for I < Iend we reach a structure similar to (3.9) – however with a long-run mean
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Figure 9: Distance of Different Terminal Conditions for Increasing Terminal
Time T

Terminal condition A: VA(T ) = µ ∗ I, terminal condition B: VB(T ) = 0.

Figure 10: The Effect of Introducing a Penalty Term in the Terminal Condition
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of e−ρTdtνµ instead of µ. If I ≥ Iend and T ≥ T we have an shape identical with
(3.9). For I ≥ Iend the control surface is similar to (3.9). Below T the area where
copt = 0 is increasing to the right side (i.e. with lower prices) with decreasing T .
The value surface reflects this by showing an abrupt jump in the area where the
control differs from either (3.8) or (3.9). Moreover, below Iend the value surface is
negative. For the value surface of (3.8) we refer to Thompson et a. (2009). There we
see a monotonically increasing function with lowest value when price and inventory
are zero.

5 Conclusions

In this article we analyze TTF spot prices and find their volatility to be quite
variable. We show that existing concepts are not adequate to model this feature.
Therefore we introduce a new continuous-time gas price model in which the volatility
parameter follows a GARCH diffusion.

This result is subsequently incorporated in a PDE-based algorithm for pricing
a gas storage facility. We discuss the design of the various storage parameters and
give different version for storage costs and terminal condition.

Using this pricing algorith we perform a sensitivity analysis for all parameters.
The larger the volatility at the beginning of the storage lease, the higher the storage
value, although the effect is decreasing for extremely high and low prices. Volatility
parameters have – as long as they enhance price oscillation – the same effect. A
higher mean reversion reduces the price fluctuation and has a negative influence on
the storage value (and vice versa). Knowledge about these effects is valuable, as one
can easily estimate the effects of changing markets on the storage strategy and the
facility value.

We also discuss the influence of different cost structures and terminal conditions.
This does not only help to design storage lease contracts but also gives an important
argument in favour of a dynamic storage operating strategy. We show that the
dynamic features of a storage facility are much more important than details of e.g.
lease period or lease time. Together with a higher spot-market volatility is this the
major reason for preferring an option-based storage strategy to a forward-based one.
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A The Function MINMOD

minmod(a, b) =


a if |a| < |b| & ab > 0,

b if |b| < |a| & ab > 0,

0 if ab ≤ 0.

B Deriving the Control Boundaries

Thompson et al. (2009) conclude from fluid mechanics that the maximum outflow
must be in a square root relation to the inventory level, i.e. cmax(I) = K

√
I,K ∈

R. Our maximum deliverability is 7.2Mm2/day and the maximum working gas is
237Mm3. Therefore 7.2 = K ·

√
237 → K = 0.4677.

The injection of gas is more complicated as pump pressure has to be respected
as well. Thompson et al. (2009) derive the relation

cmin(I) = −K1

√
1/(I + Ib) +K2, K1,K2 ∈ R.

To find K1,K2 we require two equations. In case of a full storage, no gas can be
injected and therefore we can conclude K2 = −1/314 and in case of an empty storage
(i.e. maximal injectivity) we have 3.6 = K1

√
1/77− 1/314 → K1 = −36.3612.
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