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Abstract: This paper proposes cost sensitive criteria for constructing

classification rules by supervised learning methods. Reinterpreting estab-

lished loss functions and considering those introduced by Buja, Stuetzle,

et al. (2005) and Hand (2009), we identify criteria reflecting different de-

grees of information about misclassification costs. To adapt classification

methodology to practical cost considerations, we suggest the use of these

criteria for different model selection approaches in supervised learning. In

addition, we investigate the effects of cost sensitive adaptations in CART

and boosting and conclude that adaptations are more promising in the se-

lection rather than in the estimation step.

Keywords: unequal misclassification costs, proper scoring rules, AUC,

boosting, CART, model selection, pruning, early stopping

1 Introduction

Classification tasks are an often encountered problem in various disciplines. In general,

the aim is to combine observable predictive variables into a classification rule that best

predicts unknown class membership of an object. The classification rule is learned from

a training sample, i.e. objects for which both predictive variables and class membership

have been observed. This amounts to methods of supervised learning, which commonly

include an estimation and a model selection step.

It if often demanded to match methodology to the actual application. Hence, criteria

defining the ”best” prediction and thereby applicable for constructing classification

rules should be chosen according to the practical problem at hand, cf. Hand and

Vinciotti (2003), Berger (1985), Berk (2008).

Classification is commonly concerned with misclassification rate or misclassification

cost. Some problems arise with employing these criteria for constructing classifica-

tion rules. First, they would lead to discontinuous objective functions in optimization

problems making many standard methods inapplicable. Second, it is often difficult

in practice to exactly quantify misclassification costs for each of the classes. Instead,

information about the consequences of false classifications may rather be incomplete

or even nonexistent. Hence, the eligibility of a criterion is determined by the available

information about misclassification costs.
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Thanks to a large number of existing criteria for classifier evaluation and construc-

tion, solutions to these problems do exist. However, they have not been considered

from a cost related point of view. The problem of a discontinuous objective function

is overcome by focusing on class probability predictions and employing approxima-

tions reflecting equal misclassification costs. Unequal misclassification costs are com-

monly accounted for by adjusting prior probabilities according to assumed costs, cf.

Landesa-Vázquez and Alba-Castro (2012), Therneau and Atkinson (2013)).

An alternative approach is due to Masnadi-Shirazi and Vasconcelos (2007).

Buja, Stuetzle, et al. (2005) and Hand (2009) independently develop a class of

criteria that are able to account for misclassification costs not exactly quantified by

posing distributional assumptions on the cost ratio. Hand (2009) suggests their use

in classifier evaluation. Buja, Stuetzle, et al. (2005) investigate their applicability

for class probability estimation, for splitting in CART and as optimization criterion in

boosting and compare them to standard approaches. However, they do not consider

alternative cost sensitive approaches in their comparison. More important, the criteria’s

use in the selection step has not been investigated although this forms a crucial part

in many learning methods.

Although it has not yet been made explicit, a criterion applicable in the case of

completely unknown misclassification costs is given by the Area under the Receiver

Operating Characteristics curve (AUC). Pepe and Thompson (2000) introduce the

AUC as an optimization criterion for estimating parametric models, which is advanced

by Ma and Huang (2005). The AUC is also proposed as a model selection criterion,

for example by Ma and Huang (2007) and Huang, Qin, et al. (2011).

The aim of this paper is twofold. First, it is to reveal the ability of well known criteria

to capture different degrees of information about misclassification costs. Second, we in-

vestigate different approaches of accounting for no, incomplete or complete information

in classification methods to match statistical methodology to practical considerations.

The next section reviews loss functions for binary classification problems focusing on

proper scoring rules, which reflect unknown, uncertain or fixed misclassification costs.

The third section discusses cost sensitive adaptations for classification methods apper-

taining to supervised learning. Due to the principles underlying supervised learning,

the proper scoring rules can be used to account for uncertain and unequal misclas-

sification costs in estimation and selection. In particular, we construct cost sensitive

prediction rules with Classification and Regression Trees (CART) and gradient boosting

by reviewing, reinterpreting and advancing the ideas of Buja, Stuetzle, et al. (2005).

Different cost sensitive adaptations are analyzed in a simulation study in Section 4.

The effects of beta-loss are compared to those of prior probability adjustment in CART

and of loss functions introduced by Masnadi-Shirazi and Vasconcelos (2007) in

boosting. The final section discusses main results and avenues for further research.
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2 Loss functions for cost sensitive classification

Predicting class membership can be regarded as a statistical decision problem of finding

an optimal (Bayes) prediction rule. A prediction rule is a function f mapping predictive

variables X to an output variable G, which both have joint density fG,X . It serves to

predictG when onlyX can be observed for an object. With a wrong prediction resulting

in loss L(G, f(X)), the Bayes rule is to minimize expected loss given by

EG,X [L(G, f(X))] =

∫
R

∫
X
L(g, f(x))fG,X(g, x) dx dg.

This is equivalent to minimizing posterior expected loss

EG|X [L(G, f(X))|X = x] =

∫
R
L(g, f(x))πg(x) dg,

where πg(x) denotes the conditional probability density or mass function of G given

X. In regression problems, the prediction rule is a function f : X 7→ R and the

loss of a prediction usually serves to reflect a distance between g and f(x); compare

e.g. Berger (1985). In a binary classification problem, G is a categorical variable

with support {0, 1} denoting the membership to a class Ωg. The prediction rule or

classification rule is a function d : X 7→ {0, 1}. Making use of simplifications for the

two-class-case, we use loss functions L(0, d(x)) = L0(d(x)), L(1, d(x)) = L1(d(x)); prior

class probabilities π1 = π, π0 = 1 − π and posterior class probabilities π1(x) = π(x),

π0(x) = 1− π(x). Hence, expected loss simplifies to

EG,X [L(G, d(X))] =

∫
X
L0(d(x))f0(x)(1− π) dx+

∫
X
L1(d(x))f1(x)π dx (1)

with posterior expected loss

EG|X [L(G, d(X))|X = x] = L0(d(x))(1− π(x)) + L1(d(x))π(x). (2)

In the standard approach to classification, the loss function of a classification rule is

determined by the consequences of assigning an object from Ωi to Ωj , which are usually

termed costs ci,j . Assuming perfect information about misclassification costs c0,1 and

c1,0 leads to generalized 0-1-loss

L0(d(x)) = I(d(x) = 1)c0,1

L1(d(x)) = I(d(x) = 0)c1,0.
(3)

The Bayes classification rule d∗c for generalized 0-1-loss minimizing (posterior) expected

loss is given by

d∗c(x) = I (π(x) > c) , with c = c0,1/(c0,1 + c1,0). (4)

Thus, the decision only depends on π(x) and the ratio of costs. With known mis-
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classification costs, finding the optimal decision rule reduces to the task of predicting

posterior class probability π(x). Probability prediction can be considered as a special

type of regression problem employing a prediction rule p : X 7→ [0, 1].

In standard decision theory, probability predictions are assessed by scoring rules. In

general, scoring rules are loss functions LS defining the loss from stating a probability

distribution and a certain event occurs. In the two-class case, a probabilistic forecast

is completely given by stating a probability p for one of the classes. A scoring rule is

proper if the expected loss is defined, minimized and less than +∞ when p is the true

class probability; cf. Gneiting and Raftery (2007, Section 2) and Schervish (1989).

The minimum expected loss of a proper scoring rule is known as information measure.

Guaranteeing minimum expected loss for the true probability, proper scoring rules seem

a natural choice of loss functions if classification is based on class probabilities.

Buja, Stuetzle, et al. (2005) have transferred scoring rules to statistical decision

theory, where predictions regard posterior class probabilities given X. In the binary

case with p(x) denoting predicted posterior class 1 probability, scoring rules are defined

by a pair of functions (LS0 (p(x)), LS1 (p(x))). Posterior expected loss of a proper scoring

rule, given by

EG|X [LS(G, p(X))|X = x] = LS0 (p(x))(1− π(x)) + LS1 (p(x))π(x)

is minimized by the Bayes rule p∗(x) = π(x). The minimum achievable posterior

expected loss yields the information measure for the data dependent case, which is

defined as

Hx(π) = EG|X [LS(G, π(X))|X = x] = LS0 (π(x))(1− π(x)) + LS1 (π(x))π(x), (5)

for all proper scoring rules LS ; cf. Buja, Stuetzle, et al. (2005).

Using the integral representation for binary proper scoring rules, which is derived by

Schervish (1989), Buja, Stuetzle, et al. (2005) reveal a practical interpretation of

proper scoring rules: The integral representation of proper scoring rules is

LS0 (p(x)) =

∫ 1

0
I(p(x) > c)cw(c) dc

LS1 (p(x)) =

∫ 1

0
I(p(x) ≤ c)(1− c)w(c) dc.

(6)

Restating generalized 0-1-loss as function of p(x) leads to

L0(p(x)) = I(p(x) > c)c0,1 = I(p(x) > c)(c · (c0,1 + c1,0))

L1(p(x)) = I(p(x) ≤ c)c1,0 = I(p(x) ≤ c)((1− c) · (c0,1 + c1,0)).

As decision problems are equivalent for a loss L and a loss aL, where a is an arbitrary

constant (Dawid (2007)), (c0,1 + c1,0) can be omitted without changing the optimal

prediction rule. Thus, proper scoring rules can be interpreted as misclassification costs

averaged for a proportion c, where the Lebesgue density w(c) of w(dc) serves as weight
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function; cf. Theorem 1’ of Buja, Stuetzle, et al. (2005).

Hand (2010) derives a similar expression employing decision rules based on a score

s : X 7→ R, which is interpreted as a monotone increasing transformation of predicted

class probability p(x). Expected loss from generalized 0-1-loss can then be written as

EG,X [L(G, s(X))] = (c(1− π)(1− Fs0(t)) + (1− c)πFs1(t))(c0,1 + c1,0), (7)

with Fsg(t) = P (s(X) ≤ t|G = g). Assuming that Fsg are differentiable, the optimal

threshold t∗ for a given ratio c can be found by maximizing (7). Hand (2010) shows

that, given the solution is unique, the optimal threshold is t∗(c) = P−1
1 (c), where P−1

1

is the inversion of

P1(t) = P (G = 1|t) =
πfs1(t)

(1− π)fs0(t) + πfs1(t)
.

If s∗(x) is a monotone transformation of the true posterior class probability π(x), then

I(s∗(x) > t∗(c)) is a Bayes classification rule for generalized 0-1-loss.

Assuming that c = c0,1/(c0,1 + c1,0) and v = c0,1 + c1,0 have a joint density wCV (c, v),

Hand (2010) derives the expected loss of the classification rule I(s(x) > t∗(c)) as:

EG,X [L(G, s(X))] =

∫ 1

0

(
c(1− π)(1− Fs0(t∗(c))) + (1− c)πFs1(t∗(c))

)
ν(c) dc,

with ν(c) =

∫ ∞
0

v wCV (c, v) dv.

With c and v independent the weight simplifies to ν(c) = w(c)E(v); cf. Hand (2010).

Setting E(v) = 1, it can be shown that expected loss of Hand (2010) can be rewritten

as expected loss in (1) with d(x) = I(s(x) > t∗(c)) and loss functions

LS0 (s(x)) =

∫ 1

0
I(s(x) > t∗(c))cw(c) dc

LS1 (s(x)) =

∫ 1

0
I(s(x) ≤ t∗(c))(1− c)w(c) dc,

so that loss functions are equivalent to proper scoring rules of Buja, Stuetzle, et

al. (2005).

The weight w(c) enables the construction of arbitrary proper scoring rules, on the one

hand, and is interpretable as cost weight, on the other. These features can be used to

derive loss functions for p(x) that are tailored to the actual problem of application. That

is, weights can be set to reflect assumptions about likely values of c and thereby about

the ratio of the two types of misclassification costs. Buja, Stuetzle, et al. (2005) and

Hand (2010) propose to use weight functions stemming from the probability density

of the Beta distribution

wa,b(c) =
1

B(a, b)
ca−1(1− c)b−1.

This family includes squared error loss with weight 2wa,b(c) and a = b = 1 so that
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w(c) = 1

Lbs0 (p(x)) = p(x)2

Lbs1 (p(x)) = (1− p(x))2.
(8)

Generalized 0-1-loss results from a = b→∞ so that w(dc) = δc( dc)

Lc0(p(x)) = I(p(x) > c)c

Lc1(p(x)) = I(p(x) ≤ c)(1− c).
(9)

If the weight function is not required to be a probability density, normalization by

B(a, b) can be omitted leading to weight functions

w′a,b(c) = ca−1(1− c)b−1,

which lead to log-loss for a = b = 0 with w(c) = (c(1− c))−1

Llog0 (p(x)) = − log(1− p(x))

Llog1 (p(x)) = − log(p(x)).
(10)

and to exponential loss for a = b = −1/2 with w(c) = 1/(c(1− c))3/2

Lexp0 (p(x)) =

(
p(x)

1− p(x)

)1/2

Lexp1 (p(x)) =

(
1− p(x)

p(x)

)1/2

,

(11)

cf. Buja, Stuetzle, et al. (2005). In general, the weighting with Beta densities yields

beta-loss, i.e. proper scoring rules of the form

L
B(a,b)
0 (p(x)) =

B(a+ 1, b)

B(a, b)
FB(a,b)(p(x))

L
B(a,b)
1 (p(x)) =

B(a, b+ 1)

B(a, b)
(1− FB(a,b)(p(x))),

(12)

where FB(a,b) denotes the cumulative distribution function of a Beta distribution.

The Beta density is a suitable weight as it can be interpreted to reflect reasonable

distributional assumptions about c, cf. Buja, Stuetzle, et al. (2005). Assuming that

c0,1 and c1,0 add up to 1, we have a/b = c/(1 − c) = c0,1/c1,0 so that the ratio of a

and b can be chosen according to assumptions about the misclassification cost ratio.

In consequence, setting a = b leads to a proper scoring rule approximating 0-1-loss.

Values of a, b reflect the amount of certainty about the ratio: the larger a, b the smaller

the variance of c which implies stronger certainty about c.

Thus, beta-loss enables the direct evaluation of a probability prediction p(x) in terms

of misclassification costs. The aim of classification can be accounted for when evaluating

p(x) without requiring the derivation of a classification rule. In contrast to generalized
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0-1-loss, beta-loss avoids specification of a fixed cut-off but still captures assumptions

about misclassification costs.

The so called ranking loss originally refers to the decision problem of bringing two

items into a ranking order. Group membership is understood to pose a natural order

of two objects with features X1 and X2, i.e. G1 > G2 means that object X1 ranks

higher that X2. Given two independently drawn objects (X1, G1) and (X2, G2) with

distribution FG,X , the decision problem is to find a ranking rule that ranks the objects

according to observable X1 and X2. The expected loss of a ranking rule is commonly

defined as the probability of ranking two randomly drawn objects incorrectly. For the

bipartite ranking problem, where G takes values in {0, 1}, Clémençon, Lugosi, et

al. (2008) show that relevant ranking rules are of the form r(x1, x2) = I(s(x1) ≥ s(x2)),

which takes value 1 if the first object is to be ranked higher than the second one. The

score s(x) is again a strictly increasing transformation of p(x). Finding the Bayes rule

r∗ in the bipartite ranking problem is equivalent to finding a score s∗(x), or equivalently

stating a p(x) that is equal to π(x). As shown by Clémençon, Lugosi, et al. (2008),

the expected loss E[Lr(G, s(X))] of a ranking rule based on s(x) can be expressed as

function of the Area under the Receiver Operating Characteristic curve AUCs of score

s(x), which is a widely accepted criterion in classifier evaluation. Precisely,

E[Lr(G, s(X))] = 2(1−AUCs)π0π1.

Thus, the optimal score s∗(x) that minimizes E[Lr(G, s(X))] maximizes the AUC of

the score and vice versa. Hence, posterior class probability π(x) or any monotone

transformation maximizes the AUC, which is the Neyman & Pearson result as stated

by Green and Swets (1966) and McIntosh and Pepe (2002).

Using results of Hand (2010), the expected ranking loss can also by expressed by

cost-weighted loss. More specifically, we state the following proposition:

Proposition 2.1 (Ranking loss as proper scoring rule). Let s(x) denote a strictly

monotone transformation of a probability forecast p(x) and r a ranking rule of the form

r(x1, x2) = I(s(x1) > s(x2)). Let fp0 and fp1 denote the densities of p(X) in Ω0 and

Ω1, respectively.

If the transformation is the identity such that r(x1, x2) = I(p(x1) > p(x2)), the loss

functions employed in expected loss of a ranking problem are proper scoring rules and

are equal to cost weighted misclassification losses as defined in (6) with weight

w(c) = (1− π)fp0(P−1
1 (c))

∣∣∣∣ dP−1
1 (c)

dc

∣∣∣∣+ πfp1(P−1
1 (c))

∣∣∣∣ dP−1
1 (c)

dc

∣∣∣∣ . (13)

such that

Lr0(p(x)) =

∫ 1

0
I(p(x) > c)c wr(c) dc

Lr1(p(x)) =

∫ 1

0
I(p(x) ≤ c)(1− c) wr(c) dc.
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Proof. See Appendix A.

The loss functions defining ranking loss can be interpreted as cost weighted mis-

classification losses, where the weight is given by (13). In this case, the cost weight

depends on the class conditional densities of p(x) (or the score s(x)). The expected loss

provides an evaluation of a prediction rule s(x) or p(x) without requiring information

about misclassification costs. For implementation, the AUC should be preferred to

E[Lr(G, s(X))] as is its empirical version is computed more easily.

Preceding results show that decision problems like probability forecasting or ranking

are also useful for binary classification problems. From a classification perspective, the

loss functions characterizing these decision problems reflect a different state of knowl-

edge about misclassification costs. While the standard loss function for classification

problems, the generalized 0-1-loss, quantifies the consequences as fixed costs c0,1 and

c1,0, other loss functions assume less certainty. Employing proper scoring rules with

beta weights, probability predictions can be evaluated from a classification perspective

without requiring specific values of misclassification costs. As many real life problems

suffer from uncertain misclassification consequences, beta-loss seems an appropriate

choice for classification problems. Ranking loss can be considered a cost-free criterion

as assumptions about misclassification costs can be avoided completely. It might be

useful for early stages of classifier development to ignore misclassification consequences

and to assess performance independently from any cost assumptions.

3 Learning classification rules from data

The joint distribution FG,X needed to obtain expected loss is unknown in practice.

Supervised statistical learning is concerned with constructing optimal prediction rules

from data by applying the principle of empirical risk minimization (ERM). Precisely,

given a training sample T = {(xi, gi)|i = 1...n} of n objects, where x1, ..., xn are

realizations of n independent and identically distributed random vectors X1, ..., Xn

with distribution function FX and where gi denotes the observed output variable of

these objects, the aim is to construct an optimal decision rule. The obtained rule

serves to predict G for an object outside the training sample with unknown output

assuming that it is drawn from the same distribution FG,X as T . Transferring the

principles of statistical decision theory, the aim in ERM is to approximate the true

Bayes prediction rule f∗. One considers functions f(x, l), l ∈ Λ, where Λ is some set

of abstract parameters indexing the set of functions. Among this set, one seeks the

function that minimizes the empirical version of expected loss, the so called empirical

risk

r(f(x, l)) =
1

n

n∑
i=1

L(gi, f(xi, l)), (14)
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where xi = (xi1, ..., xiP )′ denotes the realization of X = (X1, ..., XP )′ for the ith object.

Thereby, the estimated Bayes prediction rule f̂(x) = f(x, l̂) is obtained with

l̂ = argmin
l∈Λ

r(f(x, l)).

As a task of supervised learning, classification is characterized by the empirical risk

based on 0-1-loss:

r(d(x, l)) =
1

n

n∑
i=1

I(gi 6= d(xi, l)), (15)

where d(x, l) denotes the approximating function of a classification rule. However,

many classification methods are based on regression, dealing with continuous outcome

variables G such that approximating functions are f(x, l) : X 7→ R. A monotone

transformation h(f(x, l)) is commonly imposed to yield a regression function p(x, l)

taking values between 0 and 1, which is motivated in two different ways; compare

e.g. Cherkassky and Mulier (1998, pp. 308-311). Firstly, the transformed function

can be understood as approximating function for π(x) and the transformation ensures

that the estimate can be interpreted as probability. Proper scoring rules like squared

error loss can then be used as suitable loss functions. An alternative interpretation is

the aim of avoiding discontinuous objective functions. Therefore, h is understood as

an approximation of the indicator function d(x, l) by approaching 0 for smaller and

1 for larger arguments. In addition, the discontinuous loss function is replaced by a

continuous one. As noted above, squared error loss resulting from a = b = 1 is an

approximation to 0-1-loss. In consequence, beta-loss with a 6= b could be used as a

continuous approximation of generalized 0-1-loss. The theoretical feature of beta-loss

of reflecting uncertainty about misclassification costs therefore translates to a more

practical advantage for constructing classification rules from data. It enables direct

implementation of unequal misclassification costs with a continuous form of empirical

risk.

Due to the special role of π(x) shown in the previous section, the remainder focuses on

regression based classification. Methods for regression can be differentiated according

to the set of functions f(x, l), l ∈ Λ considered for the learning task. Choosing a set of

functions faces a trade-off between the necessity of considering functions flexible enough

to well approximate the true f∗ and of restricting flexibility to avoid overfitting, cf.

Hastie, Tibshirani, et al. (2009, Chapter 2). For a large number of methods, f(x, l)

can be expressed by a linear combination of basis expansions seeking a compromise

between restricted parametric and flexible nonparametric approaches. Approximating

functions take the form

f(x, β, γ) =
M∑
m=1

gm(x, γm)βm, (16)

where both β and γ are estimated from data. Whenever a wide class of approximating

9



functions is considered the ERM principle cannot be applied directly but needs to be

extended to control model complexity and to enable model selection. Constructing a

prediction rule from data then subsumes model selection and estimation. Restrictions

can also be imposed apriori by omitting γ and employing fixed basis functions gm(x).

This leads to non-adaptive methods that reduce to parametric estimation and do not

require model selection, cf. Cherkassky and Mulier (1998, Section 3).

3.1 Estimation with proper scoring rules

The use of alternative loss functions for estimation has already been suggested else-

where. With a fixed set of basis functions the parameter vector β = (β1, ..., βM )′

with β ∈ RM can be estimated by directly applying the ERM principle. Transforming

f(x, β) to p(x, β) enables the use of proper scoring rules. In general, with gi ∈ {0, 1},
the empirical risk of p(x, β) is

r(p(x, β)) =
1

n

n∑
i=1

giL1(p(xi, β)) + (1− gi)L0(p(xi, β)). (17)

Employing log-loss leads to Maximum Likelihood estimation. If p(x, β) = h(β′x) and h

is the logistic function, standard logistic regression results. Squared error loss leads to

Brier score (8). As seen in the previous section, the class of proper scoring rules offer

alternatives that are more suitable for cost sensitive classification.

Buja, Stuetzle, et al. (2005) suggest the use of beta-loss for estimation. The

parameters a and b can be chosen according to the assumptions about misclassification

costs so that practical considerations are taken into account by the estimation criterion.

Implementations show that estimation is unstable for very large values of a and b, which

prevents loss functions that are close to generalized 0-1-loss.

Pepe and Thompson (2000) indirectly proposed to use ranking loss by using the

empirical AUC as objective function for estimating β in f(x, β). Precisely, β̂ results

from maximizing the empirical AUC. Ma and Huang (2005) propose the sigmoid

AUC to approximate the indicator function in the empirical AUC thereby avoiding

optimization with a discontinuous objective function.

3.2 Model selection with proper scoring rules

Many methods employ a large number or flexible basis expansions necessitating model

selection to avoid overfitting. Model complexity depends on the features gm. Re-

strictions are therefore implemented through parametric penalties, which control the

complexity indirectly by imposing constraints on the parameters β or by early stopping;

compare e.g. Cherkassky and Mulier (1998, pp. 70-74, 265-267).

Formally, a penalized form of empirical risk is employed as optimization criterion:

rpen(f(x, β, γ)) = r(f(x, β, γ)) + λJ(β). (18)

The regularization parameter λ determines the strength of the penalty imposed. The
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right choice of λ constitutes the model selection problem, i.e. finding a λ̂ in (18) such

that f̂λ̂(x) obtained from minimizing the penalized risk for λ̂ is the best estimate of the

true Bayes rule f∗.

Determining the “best” f̂λ̂(x) indicates assessment of the estimated prediction rule,

which is the reason for the close relationship of model evaluation and selection. Ac-

counting for the purpose of estimated rules to make predictions for an object (X0, G0)

outside the training sample, prediction error RT (f̂(X0)) = E(L(G0, f̂(X0))|T ) seems a

reasonable criterion. It is especially important in wrapper methods, which amount to

feature selection after applying the estimation step, and in embedded methods, which

integrate estimation and selection. In contrast, filter methods exclude features before

applying a particular learning method. See Guyon and Elisseeff (2003) for a detailed

discussion.

As the true prediction error is unknown, estimation of prediction error RT (f̂) is

crucial to the problems of model assessment and selection. Cross-validation provides

a very flexible approach to prediction error estimation and thereby to model selection.

In general, cross-validation proceeds as follows.

1. Divide T = {(xi, gi)|i = 1...n} into K subsets T1, ..., TK .

2. Estimate the prediction rule f∗T−k,λ
(x) from data in T−k = T \Tk by minimizing

(penalized) empirical risk for a certain λ, where λ implies some kind of complexity

of f .

3. Use f̂T−k,λ(x) to make prediction for objects i in Tk and calculate the prediction

error

rk(f̂T−k,λ) =
1

nk

∑
{i|(xi,gi)∈Tk}

L(gi, f̂T−k,λ(xi)),

where nk denotes the number of objects in Tk.

4. Repeat 2 and 3 for k = 1, ...,K and calculate

rcv(f̂λ) =
1

K

K∑
k=1

rk(f̂T−k,λ).

which is equal to

rcv(f̂λ) =
1

n

n∑
i=1

L(gi, f̂T−k(i),λ(xi)),

where T−k(i) indicates the subset T−k that does not contain object (gi, xi), T−k(i) =

{T \Tk|(gi, xi) ∈ Tk}.

5. Repeat 2 to 4 for different λ.

6. Choose λ̂ for which rcv(f̂λ) is minimal.

Estimates of prediction error obtained by resampling are not restricted to particular

functional forms of L and f . In addition, the loss function L in rcv does not have
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to coincide with the loss function used in estimation. When predicting a quantitative

output, the aim is to obtain a prediction that is close to the true value so that squared

error or log-loss are a common choice for L. Thus, in regression problems these loss

functions are used both in estimation and selection steps. If p̂(x) is used to derive a

classification rule, correct predictions of class membership are more important than ac-

curately predicting class probability. Thus, classification rules are typically assessed and

selected by criteria based on 0-1-loss; compare e.g. Cherkassky and Mulier (1998,

Chapter 8) or McLachlan (1992, Chapter 10). Hence, the loss functions differ from

the one in estimation, where 0-1-loss is usually approximated as described above; cf.

Cherkassky and Mulier (1998, Chapter 8).

Friedman (1997) notes that a poor approximation of p̂(x) to π(x) according to

squared error or log-loss does not necessarily lead to low classification performance of

the corresponding classification rule d̂(x) = I(p̂(x) > c). Instead, it is widely acknowl-

edged that methods providing accurate estimates of class probabilities might perform

worse in terms of 0-1-loss than simpler methods with poor estimation performance; see

for example Friedman (1997), Hand and Vinciotti (2003). The trade-off that con-

stricts model fit and motivates model selection in regression does therefore not apply

to classification directly. When applying regression methods to construct classification

rules, this difference should be accounted for in model selection. Therefore we intro-

duce adaptations to suit the classification problem within in the model selection step

by taking into account cost considerations.

Employing generalized 0-1-loss and a classification rule derived from an estimate

p̂(x) = p(x, β̂, γ̂) of π(x), the selection criterion is thus defined as

rccv(p̂λ) =
1

n

n∑
i=1

(1− c)giI(p̂T−k(i),λ(xi) ≤ c) + c(1− gi)I(p̂T−k(i),λ(xi) > c),

with c = c0,1/(c0,1 + c1,0).

But its application is complicated by the fact that c0,1 and c1,0 and hence c are difficult

to quantify in practice. For the case of uncertain misclassification costs with available

distributional assumptions regarding the ratio of c0,1 and c1,0, the beta-loss can be

applied instead:

rB(a,b)
cv (p̂λ) =

1

n

n∑
i=1

gi
B(a, b+ 1)

B(a, b)
(1− FB(a,b)(p̂T−k(i),λ(xi)))

+ (1− gi)
B(a+ 1, b)

B(a, b)
FB(a,b)(p̂T−k(i),λ(xi)).

As noted above, beta-loss has the advantage of being directly applicable to probability

predictions instead of classification rules. With suitably chosen weights, it still implies

evaluation and selection based on misclassification costs. The choice of a fixed cut-off

as necessary with generalized-loss can be avoided, which accounts for uncertainty about

unequal misclassification cost. So far, beta-loss based criteria have not been used for

model selection.
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If no assumptions about misclassification costs can be made, ranking loss was iden-

tified as most suitable loss function. In that case, the prediction error is based on

the ranking loss Lr. Employing its cost weighted form with weight wr(c) requires es-

timation of score densities fs0 and fs1 . Employment of the AUC is more practicable

leading to a cross-validatory selection criterion which is to maximized. The pairwise

comparison requires separate calculation of the prediction error for each fold k

rauck (p̂T−k,λ) =
1

nk

nk∑
i=1

∑
j 6=i

I(gi > gj) · I(p̂T−k,λ(xi) > p̂T−k,λ(xj))

to obtain the final estimate

rauccv (p̂λ) =
1

K

K∑
k=1

rauck (p̂T−k,λ).

These criteria can be employed in wrapper and embedded approaches to model selec-

tion, where λ takes a different role but the general procedure applies in each case.

3.2.1 Wrapper methods and embedded methods with penalties

Wrapper methods lend themselves to non-adaptive methods with a large number of

basis expansions gm(x) so that model selection constitutes a pure feature selection

problem. In that case, the parameter λ can be understood as indexing a certain subset

of features. The procedure described above is performed for various feature subsets.

Estimated prediction error serves to select the best feature subset so that the cost

adapted criteria above, especially beta-loss, can be employed easily. Using the AUC,

estimated by cross-validation, for assessing estimated scores f(x, β̂) is proposed by Ma

and Huang (2007). In particular, it is employed within a wrapper approach to feature

selection by Huang, Qin, et al. (2011). Wang, Chen, et al. (2011) also employ a

cross-validatory estimate of the AUC for feature selection, where the prediction rule is

obtained by logistic regression.

Embedded methods with penalties estimate β by minimizing penalized empirical

risk rpen as stated in (18). This favors continuous forms of the empirical risk r and

the penalty J . The penalty shrinks the parameter towards 0 to control complexity.

The loss functions entering empirical risk can be chosen as in Section 3.1 so that cost

sensitive adaptations can be implemented. In fact, Ma and Huang (2008) point out

that any combination of empirical risk and penalty could be implemented. For example,

Zhou, Chen, et al. (2012) use a smoothed version of the empirical AUC. A cost oriented

perspective can also adopted by employing beta-loss possibly approximating generalized

0-1-loss.

The model selection step of choosing λ̂ is done by the cross-validation procedure

described above. Hence, cost sensitive adaptations are straightforward using suitable

loss functions for prediction error.
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3.2.2 Embedded methods with pruning: CART

Another form of embedded methods is due to performing greedy optimization. Basis

expansions gm are added and hidden parameter vectors γm are estimated in a stepwise

mode, so that feature selection is part of the optimization process to minimize (penal-

ized) empirical risk; cf. e.g. Cherkassky and Mulier (1998, Chapter 5). The model

selection step consists of deleting added basis expansions denoted as pruning. Classi-

fication and Regression Trees, imputed to Breiman, Friedman, et al. (1984), is an

embedded method that employs pruning. In basis expansions expression the regression

function takes the form

f(x, β, T ) =
M∑
m=1

βmI(x ∈ Tm) (19)

=
M∑
m=1

βm

P∏
p=1

I(γ1pm ≤ xp ≤ γ2pm)

such that the basis expansions are gm(x, γ1m, γ2m) =
∏P
p=1 I(γ1pm ≤ xp ≤ γ2pm); cf.

e.g. Cherkassky and Mulier (1998, Section 5.3).

As the defined regions Tm are disjoint, the predicted output is equal to βm for an

object x in region Tm, so that the region specific prediction rule is f(x, β|Tm) = βm.

The empirical risk is defined as

r(f(x, β, T )) =
M∑
m=1

p(Tm)rm(f(x, β|Tm)),

where p(Tm) denotes the estimated probability of an object to fall into Tm. With a

specified set of regions T1, ..., TM , minimization of empirical risk subject to β for the

complete training sample can be achieved by separately minimizing the region specific

risks

rm(f(x, β|Tm)) =
1

nTm

∑
{i|xi∈Tm}

L(gi, f(xi, β|Tm)) =
1

nTm

∑
{i|xi∈Tm}

L(gi, βm),

with nTm = |{i|xi ∈ Tm}| ,

subject to βm, cf. Breiman, Friedman, et al. (1984, Section 8.4). Prior to estimating

β, optimal regions T̂m have to be determined. These are distinct subsets of observations

x = {xi|i = 1, ..., n} such that the empirical risk of (19) is minimal. Binary splits of

x are performed stepwise defining new subsets (nodes). At each node a new split s,

i.e. the variable Xj along with a cut-off a, has to be chosen from all possible splits

S. Stopping the splitting process, one arrives at the terminal nodes that define the

regions T̂m and thus the final tree T̂ . The optimal split s∗ at each non-terminal node

t maximizes the difference between the minimum achievable risk of the current node

and the weighted sum of minimum risks of its two descendant nodes. In classification

trees, i.e. with G discrete, the classification decision is based on class proportions. The
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optimal split depends on the proportion of objects from class 1 in the node, p(1|t),
which minimizes the node specific risk. Splitting criteria, called impurity measures,

can therefore be interpreted as an empirical version of information in node t

Ht(p) =
1

nt

∑
{i|xi∈t}

L(gi, p(1|t)).

With 0-1-loss, the impurity measure is given by misclassification rate

H0,1
t (p) = min{p(1|t), 1− p(1|t)},

which does not provide a good splitting criterion (Breiman, Friedman, et al. (1984,

Chapter 4)). Instead, entropy derived from log-loss is favored:

H log
t (p) = −p(1|t) log p(1|t)− (1− p(1|t)) log(1− p(1|t)).

Alternatively, a regression related approach with squared error loss leads to the Gini

index

Hbs
t (p) =

1

nt

∑
xi∈t

(gi − p(1|t))2 = p(1|t)(1− p(1|t)).

Splitting criteria based on squared error loss or log-loss imply equal misclassifica-

tion costs. Typically, unequal misclassification costs are not implemented by the loss

functions but by adapting prior probabilities πg; compare Breiman, Friedman, et

al. (1984, p. 28 and Section 4.4) and Therneau and Atkinson (2013). However, for

adapting prior probabilities misclassification costs need to be fixed.

As impurity measures are minimum achievable risks, it is straightforward to con-

sider alternative measures by altering the loss function in Ht(p). Buja, Stuetzle,

et al. (2005) propose to use information measures Ht(p) based on beta-loss so that

H
B(a,b)
t (p) = p(1|t)LB(a,b)

1 (p(1|t)) + (1− p(1|t))LB(a,b)
0 (p(1|t)).

In an empirical study, they compare the Gini index to HB(a,b) with large differences

between a and b. They reveal that trees, which are split with beta-loss, show a stronger

concentration on one class. This leads to better interpretability but lower prediction

performance. However, a direct comparison of these measures is not appropriate as

they represent different assumptions about the ratio of misclassification costs. Beta-

loss directly induces unequal misclassification costs and can be seen as an alternative

to the adaptation of prior class probabilities to account for unequal misclassification

costs. Thus, its role as surrogate loss function for generalized 0-1-loss also applies for

this case. In contrast, the Gini index is used for equal misclassification costs so that a

comparison to splitting with HB(a,b)(p) is more appropriate with adapted priors. Figure

1 shows impurity HB(a,b)(p) as a function of p for different choices of a and b. As a = b

implies the assumption of equal misclassification costs, the impurity is seen to achieve
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its maximum for p = 0.5. For a = b = 1, the impurity measure is equal to the Gini

index. For unequal parameters a and b, the maximum of HB(a,b)(p) is shifted towards

the value of p that is least favorable when c0,1/c1,0 = a/b. For example, the maximum is

0.4242 for a = 2, b = 3 and 0.4040 for a = 20, b = 30. Thus, approaching generalized 0-

1-loss with increasing values of a and b, the maximum is shifted towards p = 0.4, which

is the least favorable class distribution when p = p(1|t) = p(0|t)/1.5 and c1,0/c0,1 = 1.5.

Hence, the effect of a/b = 2/3, implying c0,1/c1,0 = 2/3, is equivalent to the effect

obtained by adapting the priors as described by Therneau and Atkinson (2013).

An impurity measure can also be derived from ranking loss. As ranking loss implies

avoidance of a classification decision, its implementation as splitting criterion leading

to an actual classification seems inappropriate.

0 0.5 1

0.25

p

H(p)

a = 1, b = 1
a = 2, b = 3
a = 20, b = 30
a = 100, b = 100

Figure 1: Impurity measure based on beta-loss for different choices of a
and b as function of class 1 probability, HB(a,b)(p).

The class of approximating functions considered with (19) is very wide. The fact

that splitting a node always reduces empirical risk of the tree leads to overfitting and

requires regularization. The standard approach, suggested by Breiman, Friedman,

et al. (1984, Chapter 3), is known as cost-complexity pruning and represents another

special form of the model selection procedure described above. A grown tree T̂ is

“pruned” to a smaller subtree by backward elimination of splits. Based on the full tree

T̂ , for each value of λ a subtree is determined, which minimizes a penalized version of

the empirical risk

rλ(f(x, β, T̂ )) =
M∑
m=1

p(Tm)rm(f(x, β|T̂m)) + λM.

Hence, the empirical risk of a tree is traded off against the number of its terminal nodes,

i.e. the number of basis expansions, which define the tree’s complexity. The tree that

minimizes rλ(f(x, β, T̂ )) is denoted as T̂λ̂. The value of λ, for which Tλ achieves the
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lowest estimated prediction error is chosen as the optimal solution λ̂. The estimate of

prediction error can be obtained by cross-validation. Therefore, the general procedure

of determining λ̂ as described above applies. Again, squared error loss is used for

regression trees so that loss functions for splitting and pruning coincide. In contrast,

pruning classification trees, or regression trees that provide class probability predictions

p(x, β, T ), is commonly based on (generalized) 0-1-loss. In addition, optimal pruning of

a tree can also be determined according costs sensitive criteria like beta-loss. This is a

promising approach to model selection for trees as Breiman, Friedman, et al. (1984)

note that the choice of the loss function is more influential in the pruning than in the

splitting process.

3.2.3 Embedded methods with early stopping: Gradient-descent boosting

Boosting is a form of ensemble learning, which aims at combining classifiers with low

classification performance to a classifier with strongly increased performance. How-

ever, the method can also be interpreted as a regression problem with basis expansion

functions that employs a stagewise optimization; compare e.g. Hastie, Tibshirani,

et al. (2009, Chapter 10) and Berk (2008, Chapter 6). In boosting applications, the

basis expansions are often called base learners. As before, the optimal prediction rule

is estimated by minimizing empirical risk such that

f̂(x) = f(x, β̂, γ̂)

with (β̂, γ̂) = argmin
β,γ

n∑
i=1

L

(
gi,

M∑
m=1

gm(x, γm)βm

)
.

In its original version, the AdaBoost algorithm of Freund and Schapire (1995),

each of the basis expansions is a classifier trained from iteratively reweighted versions of

the training sample. Employing a generalized version, where the base learners provide

probability estimates such that gm(x) : X 7→ [0, 1], Friedman, Hastie, et al. (2000)

show that AdaBoost amounts to estimating f(x, β, γ) by minimizing empirical risk

derived from exponential loss in its original form,

L(g, f(x)) = exp(−(2g − 1)f(x)),

employing a classification rule d(x) = I(f(x) > 0). This reformulation of the AdaBoost

algorithm allows the procedure to be interpreted as stagewise fitting of an additive

model by greedy optimization. The interpretation has lead to approaches employing

alternative loss functions and forms of gm.

Precisely, fitting the regression function to the data by forward stagewise additive

modeling works as follows (cf. Hastie, Tibshirani, et al. (2009, p. 342) and Fried-

man (2001)):

1. Initialize f0 = 0,

2. for m = 1 to M
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a) compute

(βm, γm) = argmin
β0,γ0

n∑
i=1

L(gi, fm−1(xi) + β0gm(xi, γ0)),

b) set fm(x) = fm−1(x) + βmgm(x, γm).

The basis expansion and its coefficient obtained at stage m are not changed in subse-

quent stages so that fM (x) = f̂(x).

Variants of boosting emerge from different choices for the loss function L, from con-

sidered sets of basis expansions and from methodological differences in the optimization

in 2.a); compare e.g. Friedman, Hastie, et al. (2000). A common approach for 2.a),

which shall be focused in the remainder, leads to gradient boosting, where each step

builds on the the negative gradient of L with regard to f(xi, β, γ). Mathematical details

on the procedure are provided by Friedman (2001).

Generalizing AdaBoost in that way, Friedman, Hastie, et al. (2000), Fried-

man (2001) and Bühlmann and Hothorn (2007) propose the use of alternative base

learners, such as simple regression functions or decision trees. They also employ alter-

native loss functions to handle classification as well as regression problems. Practical

implementation of these ideas for is provided via the R-package mboost (cf. Hothorn,

Bühlmann, et al. (2013)), whose flexibility allows for further adaptations; cf. Hofner,

Mayr, et al. (2012).

Again, continuous loss functions are necessary as greedy optimization procedures

in boosting employ the derivative of the loss function. According to Bühlmann and

Yu (2000), the exponential loss is a very suitable approximation to 0-1-loss. Unequal

misclassification costs are usually implemented through altered prior probabilities by

giving different weights to objects in the training sample, cf. Landesa-Vázquez and

Alba-Castro (2012). A more direct approach is taken by Masnadi-Shirazi and

Vasconcelos (2007), who extend the exponential loss by implementing cost-weights

in the following form

Lcexp0 (f(x)) = I(g = 0) exp(−c0,1(2g − 1)f(x))

Lcexp1 (f(x)) = I(g = 1) exp(−c1,0(2g − 1)f(x)),

denoted as cost adjusted exponential loss in the remainder. Masnadi-Shirazi and

Vasconcelos (2007) demonstrate that the resulting classifier is actually cost-sensitive.

However, they require the misclassification costs or their ratio to be known exactly.

As before, beta-loss can be used to approximate generalized 0-1-loss. Boosting with

beta-loss and classification trees as base learners is treated by Shen (2005). Based

on an empirical comparison with simulated and real data, he concludes that beta-loss

combined with complex base learners is less beneficial in terms of misclassification

costs when compared to log-loss or to approaches with altered priors. Subsequent

analyses therefore focus on a comparison to cost adjusted exponential loss. Unknown

misclassification costs, as reflected by ranking loss, can also provide an optimization
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criterion in gradient boosting, which is for example proposed by Komori (2011) and

is also implemented in mboost. In mboost, a smoothed version of 1−AUC is used; cf.

Hofner, Mayr, et al. (2012) and Hothorn, Bühlmann, et al. (2013).

Complexity of the estimated regression function depends on the number of itera-

tions in the greedy optimization procedure as these determine the number M of basis

functions gm. Regularization is implemented by an early stopping of the iteration at

stage mstop. Thus, determination of the optimal stopping stage amounts to the model

selection part in boosting. In terms of the general procedure above, λ now indexes the

number of iterations until stopping. Cost sensitive model selection concerning misclas-

sification costs can again be implemented by choosing an appropriate loss function in

rCV .

4 Simulative comparison

Simulation studies are performed to investigate the beta-loss for constructing classi-

fication rules in CART and gradient-descent boosting. In each method, classification

rules are derived from a score or a probability prediction by employing suitable cut-off

values, i.e. d̂(x) = I(p̂(x) > c∗). The classification rules, which are constructed from a

training sample, are evaluated by their prediction error for an independent test sam-

ple. To evaluate classification performance, prediction error is computed for 0-1-loss

(classification error) and generalized 0-1-loss (misclassification costs).

A two-class-problem with X = (X1, ..., X6)′ is considered. Data are simulated for two

scenarios with increasing difficulty in constructing a classification rule. The scenarios

are defined by the following class conditional distributions of X, where I denotes the

identity matrix:

• Scenario 1:

X|G = 0 ∼ N6(µ0, I), µ0 = (0, 0, 1.5, 1.5, 3, 3)′

X|G = 1 ∼ N6(µ1, I), µ1 = µ0 + (0.5, 1, 0.5, 1, 0.5, 1)′

• Scenario 2:

X|G = 0 ∼ N6(µ0, 4 · I), µ0 = (0, 0, 0, 0, 0, 0)′

X|G = 1 ∼ N6(µ1, I), µ1 = (δ, δ, δ, δ, δ, δ)′, δ = 1/
√

6

Simulations are performed with 500 iterations using the follow design for both scenarios:

• Size of training sample: n = 100, 200, with equal class proportions

• Size of test sample: ntest = 5000, with equal class proportions

• Assumed misclassification costs (where applicable): c0,1 = 10, c1,0 = 100

As class conditional covariances are equal in the first scenario, the logistic model holds

with β = (−8.625,−0.5,−1.0,−0.5,−1.0,−0.5,−1.0)′ when π0 = π1. The second sce-

nario corresponds to the “ringnorm” data, which pose a more complex classification
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task than Scenario 1 and are commonly used as benchmark in classification; cf. Lugosi

and Vayatis (2004) and Leisch and Dimitriadou (2013).

Performance is evaluated by test sample prediction errors for 0-1-loss and general-

ized 0-1-loss with correctly and falsely specified c0,1 and c1,0. Cut-offs for classification

rule construction d̂(x) = I(p̂(x) > c∗) were chosen to be optimal for misclassification

costs implicitly assumed by the choice of the evaluation criterion. Precisely, evaluating

a classification rule in terms of classification error, i.e. prediction error with 0-1-loss

implies the assumption of equal misclassification costs. Thus, the optimal cut-off for a

probability prediction is c∗ = 1/2. If prediction error is based on generalized 0-1-loss,

unequal misclassification costs are assumed. When constructing the rule, misclassifi-

cation costs are taken as c0,1 = 10, c1,0 = 100, which leads to an optimal cut-off of

c∗ = 1/11. To show the effects of falsely specified misclassification costs, evaluation

of classification rules is also made by test sample misclassification costs calculated for

c0,1 = 11, c1,0 = 90 and c0,1 = 9, c1,0 = 110.

4.1 CART

The standard procedure of CART is implemented in the R-routine rpart (cf. Th-

erneau, Atkinson, et al. (2013)). For the two scenarios, trees are constructed to

provide probability estimates. Standard splitting criteria, entropy (H log) and Gini in-

dex (Hbs), provided by rpart are compared to a splitting criterion based on beta-

loss, HB(1,10). It is added as an external splitting function; as described by Th-

erneau (2013). As HB(1,10) implies unequal misclassification costs, a comparison with

cost adjusted priors as implemented in the standard routine is most appropriate. Thus,

the Gini index with cost adjustment (Hbs(cost)) is also considered. In addition, pruning

is performed with different loss functions. Precisely, pruning criteria are 5-fold cross-

validatory estimates of prediction error based on 0-1-loss (L1,1), generalized 0-1-loss

(L10,100), beta-loss (LB(1,10)), and Brier score Lbs.

An overall improvement in performance for all criteria is achieved with increased

sample size but results do not differ when comparing splitting and pruning criteria.

Hence, only the case of n = 100 is reported here.

In general, it has to be noted that the constructed trees show very weak classification

performance in terms of costs. Test sample errors for generalized 0-1-loss are always

higher than those that would be achieved when all subjects were assigned to the more

expensive class. Only in some scenarios, CART achieves similar costs in the test sample.

The difficulty arises due to imbalanced misclassification costs. None of the approaches,

including implementations of appropriate beta-loss, overcomes this problem. However,

some comparative results are summarized in the following.

In accordance with Breiman, Friedman, et al. (1984), splitting criteria only differ

slightly in classification performance in most cases, while larger differences can be

found for pruning criteria In terms of classification error, reported in Tables 1 and

2, splitting criteria have no influence. Pruning with the underlying assumption of

unequal misclassification costs leads to low performance . As expected, 0-1-loss is the
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most appropriate criterion for pruning when misclassification costs are equal.

H log Hbs Hbs (cost) HB(1,10)

L1,1 0.322 0.333 0.345 0.345

L10,100 0.343 0.350 0.490 0.420

Lbs 0.413 0.406 0.418 0.408

LB(1,10) 0.482 0.478 0.471 0.489

Table 1: Test sample classification error of CART for Scenario 1 with n =
100.

H log Hbs Hbs (cost) HB(1,10)

L1,1 0.315 0.325 0.293 0.284

L10,100 0.404 0.412 0.476 0.395

Lbs 0.408 0.420 0.389 0.338

LB(1,10) 0.443 0.446 0.426 0.477

Table 2: Test sample classification error of CART for Scenario 2 with n =
100.

More importantly, classification performance for unequal misclassification costs can

be improved by employing corresponding pruning criteria, i.e. criteria based on gener-

alized 0-1-loss or beta-loss. The tree is built assuming c0,1/c1,0 = 1/10. For correctly

specified misclassification costs (Tables 3 and 4), pruning with LB(1,10) leads to the best

predictions when considering all splitting criteria. Costs are slightly lower for splitting

with beta-loss. Pruning with generalized 0-1-loss L10,100 only leads to desirable predic-

tions when combined with splitting based on the Gini index with cost adjusted priors.

In this case, classification performance in terms of misclassification costs is often slightly

better than that achieved with beta-loss in splitting and pruning. Results for falsely

specified misclassification costs, i.e. when the ratio of costs is over- or underestimated,

differ between the scenarios. Tables 5 and 6 report misclassification costs, if the true

costs are c0,1 = 9 and c1,0 = 110 so that the ratio is overestimated when building the

tree. Tables 7 and 8 report the costs for the case of underestimation. In Scenario

1 (Tables 5 and 7), pruning with beta-loss combined with standard splitting criteria

leads to minimum misclassification costs. In Scenario 2 (Tables 6 and 8), pruning with

generalized 0-1-loss and prior adjusted Gini splitting leads to the lowest cost. However,

they are only slightly lower than those achieved by beta-loss splitting and pruning.

Thus, accounting for uncertain misclassification costs as implied by beta-loss does not

always improve misclassification costs if the classification rule is constructed under in-

correct assumptions about the cost ratio. However, on an overall scale, beta-loss is a

compatible choice as pruning and splitting criterion for building optimal classification

trees when misclassification costs are unequal.
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H log Hbs Hbs (cost) HB(1,10)

L1,1 7.581 7.333 9.279 8.144

L10,100 7.074 6.715 5.158 6.259

Lbs 5.246 5.147 6.194 6.581

LB(1,10) 5.103 5.054 5.438 5.188

Table 3: Test sample misclassification cost of CART with c0,1 = 10, c1,0 =
100 for Scenario 1 with n = 100.

H log Hbs Hbs (cost) HB(1,10)

L1,1 7.586 7.466 7.453 6.996

L10,100 6.166 6.026 5.229 5.847

Lbs 6.009 5.887 5.922 6.472

LB(1,10) 5.690 5.676 5.639 5.245

Table 4: Test sample misclassification cost of CART with c0,1 = 10, c1,0 =
100 for Scenario 2 with n = 100.

H log Hbs Hbs (cost) HB(1,10)

L1,1 7.642 7.355 9.640 8.307

L10,100 7.004 6.577 4.699 6.065

Lbs 4.803 4.676 6.012 6.447

LB(1,10) 4.624 4.566 5.055 4.735

Table 5: Test sample misclassification cost of CART with c0,1 = 9, c1,0 =
110 for Scenario 1 with n = 100.

H log Hbs Hbs (cost) HB(1,10)

L1,1 7.817 7.677 7.709 7.213

L10,100 6.008 5.842 4.811 5.684

Lbs 5.838 5.659 5.781 6.508

LB(1,10) 5.401 5.376 5.381 4.825

Table 6: Test sample misclassification cost of CART with c0,1 = 9, c1,0 =
110 for Scenario 2 with n = 100.
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H log Hbs Hbs (cost) HB(1,10)

L1,1 7.620 7.445 8.917 7.981

L10,100 7.189 6.893 5.618 6.454

Lbs 5.699 5.619 6.377 6.715

LB(1,10) 5.581 5.543 5.821 5.641

Table 7: Test sample misclassification cost of CART with c0,1 = 11, c1,0 =
90 for Scenario 1 with n = 100.

H log Hbs Hbs (cost) HB(1,10)

L1,1 7.499 7.513 7.196 6.780

L10,100 6.370 6.320 5.647 6.009

Lbs 6.242 6.207 6.064 6.435

LB(1,10) 6.005 6.040 5.897 5.665

Table 8: Test sample misclassification cost of CART with c0,1 = 11, c1,0 =
90 for Scenario 2 with n = 100.

4.2 Gradient-descent boosting

Second, an analysis for component-wise gradient-descent boosting as implemented in

the R-routine mboost is performed. The original predictive variables are used as base

learners. The performance of boosting with different loss functions is compared in terms

of test sample prediction errors as in the analyses before. Log-loss (log), Brier score

(bs), which have been demonstrated to be approximations to 0-1-loss, are implemented

as user written loss functions. Exponential loss (exp) is slightly modified to obtain

probability estimates instead of class predictions. Cost adjusted exponential loss of

Masnadi-Shirazi and Vasconcelos (2007) (cexp) and beta-loss B(1, 10) account for

unequal misclassification costs and are also implemented as user written loss functions.

Ranking loss (auc) is used as implemented in mboost. The procedure also includes

model selection by early stopping. From a maximum number of steps mmax = 1000,

the optimal value of m̂stop is determined by 5-fold cross-validation as implemented in

mboost. The loss function used in cross-validatory model selection is equal to the one

used in the optimization. Evaluation is based on the same types of prediction error as

in previous analysis.

Due to some differences, results for both sample sizes are reported here. Tables 9

and 10 show test sample prediction errors of the estimated probability predictions and

classification rules for Scenario 1. Log-loss performs best regardless of the evaluation

criterion since boosting with log-loss is comparable to logistic regression if the original

variables are taken as base learners; cf. Hofner, Mayr, et al. (2012). Exponential

loss and Brier score perform very similar in terms of probability predictions (LB(1,10)
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and Lbs). But performance of the Brier score in terms of misclassification costs is

weaker than for the other two. In general, misclassification costs are also higher when

employing cost adjusted exponential or beta-loss as criterion in optimization and early

stopping. While cexp performs better than beta-loss for n = 100, classification error

and misclassification costs are lower with beta-loss when the sample size is increased.

Surprisingly, auc estimates do not perform as well, which can be due to overfitting as no

cross-validation could be performed to determine the optimal stopping stage. Instead,

the number of boosting iterations was fixed at mstop = 1000.

L1,1 L10,100 L9,110 L11,90 LB(1,10) Lbs

log 0.1833 4.0518 3.7776 4.3259 0.3629 0.1291

exp 0.1856 4.1711 3.9235 4.4186 0.3742 0.1315

bs 0.1846 4.2977 3.9039 4.6915 0.3764 0.1330

cexp 0.2119 4.4050 4.0358 4.7742 0.3971 0.1468

B(1, 10) 0.2295 4.5746 4.3304 4.8188 0.4245 0.1604

auc 0.1893 4.6941 4.6565 4.7317 - -

Table 9: Test sample prediction errors of boosting with early stopping for
Scenario 1 with n = 100.

L1,1 L10,100 L9,110 L11,90 LB(1,10) Lbs

log 0.1744 3.8825 3.6057 4.1593 0.3475 0.1231

exp 0.1757 3.9278 3.6879 4.1678 0.3530 0.1242

bs 0.1760 4.3098 3.9020 4.7177 0.3730 0.1290

cexp 0.2003 4.3259 3.9382 4.7137 0.3858 0.1392

B(1, 10) 0.1996 4.1271 3.8709 4.3833 0.3769 0.1392

auc 0.1797 4.1451 4.0141 4.2760 - -

Table 10: Test sample prediction errors of boosting with early stopping for
Scenario 1 with n = 200.

In the more difficult classification task of Scenario 2, displayed in Tables 11 and 12,

employment of cost adjusted exponential loss and beta-loss proves beneficial in terms

of misclassification costs. Beta-loss outperforms cexp leading to the lowest misclas-

sification costs even if they were misspecified. Especially with increased sample size,

differences between beta-loss and other loss functions is striking. For auc, increased

sample size leads to considerable classification performance with similar misclassifica-

tion costs as obtained by beta-loss.
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L1,1 L10,100 L9,110 L11,90 LB(1,10) Lbs

log 0.3964 4.9454 4.4510 5.4397 0.4785 0.2415

exp 0.3991 4.9655 4.4692 5.4617 0.4825 0.2416

bs 0.3924 4.9367 4.4431 5.4303 0.4749 0.2410

cexp 0.3988 4.8922 4.4036 5.3807 0.4742 0.2570

B(1, 10) 0.4124 4.6591 4.2466 5.0716 0.4660 0.2693

auc 0.3665 5.0348 4.7847 5.2849 - -

Table 11: Test sample prediction errors of boosting with early stopping for
Scenario 2 with n = 100.

L1,1 L10,100 L9,110 L11,90 LB(1,10) Lbs

log 0.3774 4.9648 4.4683 5.4612 0.4751 0.2351

exp 0.3817 4.9701 4.4731 5.4671 0.4782 0.2360

bs 0.3759 4.9687 4.4718 5.4656 0.4743 0.2349

cexp 0.3691 4.9381 4.4443 5.4319 0.4742 0.2492

B(1, 10) 0.4054 4.5256 4.1088 4.9423 0.4516 0.2659

auc 0.3518 4.5747 4.2582 4.8912 - -

Table 12: Test sample prediction errors of boosting with early stopping for
Scenario 2 with n = 200.

5 Conclusion

Generalized 0-1-, beta- and ranking loss allow handling of complete, incomplete and

no information about misclassification costs, respectively. The loss functions can be

used to adapt regression based classifications methods as they enter estimation as well

as model selection criteria. Especially, beta-loss provides a suitable model selection

criterion approximating generalized 0-1-loss. This enables cost sensitive model selection

for methods that provide probability estimates instead of pure classification rules so

that uncertainty about misclassification costs can be accounted for methodologically.

Summarizing the analyses above, distinct results regarding the effect of loss functions

can be stated for the classification methods. In CART, splitting with a beta-loss based

criterion only leads to small improvements while pruning with beta-loss has stronger

effects. In the simpler scenario, pruning with beta-loss, especially when combined

with beta-loss or Gini splitting, leads to lowest misclassification costs even if these are

misspecified when building the tree. In many cases, Gini splitting with cost adjusted

priors and pruning with generalized 0-1-loss achieves similar prediction performance in

terms of misclassification costs. Hence, it is not clear which of these two combinations

is more advantageous. In general, classification performance of CART was very low in

both scenarios such that considering other scenarios could lead to more distinct results.
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Boosting and early stopping based on beta-loss is more beneficial especially for in-

creased sample size. It reveals the lowest misclassification costs in the more difficult

classification task even if these are falsely specified when constructing the classification

rule. For the smaller sample size, beta-loss shows classification performance similar to

that of cost adjusted exponential loss.
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Appendix A

Proof of Proposition 1. The first part directly follows from the result in Clémençon,

Lugosi, et al. (2008, Example 1) that the expected loss E[Lr(G, s(X))] of a ranking

rule r(x1, x2) = I(s(x1) > s(x2)) is minimized if s a strictly increasing transformation

of π(x) and therefore also by s(x) = π(x).

The second part derives from calculations based on Hand (2010): With

AUCs =

∫ ∞
−∞

(1− Fs1(t))fs0(t) dt

=

∫ ∞
−∞

(∫ ∞
t

fs1(u) du
)
fs0(t) dt,

the expected loss E[Lr(G, s(X))] can be written as

E[Lr(G, s(X))] = 2

(∫ ∞
−∞

fs0(t) dt−
∫ ∞
−∞

(∫ ∞
t

fs1(u) du

)
fs0(t) dt

)
π0π1

= 2

(∫ ∞
−∞

(
1−

∫ ∞
t

fs1(u) du

)
fs0(t) dt

)
π0π1

=

(∫ ∞
−∞

(∫ ∞
u

fs0(t) dt

)
fs1(u) du+

∫ ∞
−∞

(Fs1(t))fs0(t) dt

)
π0π1

=

(∫ ∞
−∞

(1− Fs0(u))fs1(u) du+

∫ ∞
−∞

(Fs1(t))fs0(t) dt

)
π0π1

=

∫ ∞
−∞

(π0π1(1− Fs0(t))fs1(t) + π0π1(Fs1(t))fs0(t)) dt

=

∫ ∞
−∞

(P1(t)π0(1− Fs0(t)) + (1− P1(t))π1(Fs1(t)))

· (π0fs0(t) + π1fs1(t)) dt,

where P1(t) =
πfs1(t)

(1− π)fs0(t) + πfs1(t)
.

A variable change from t to c, where t = P−1
1 (c), yields

E[Lr(G, s(X))] =

∫ 1

0

(
c(1− π)(1− Fs0(P−1

1 (c))) + (1− c)π(Fs1(P−1
1 (c)))

)
·
(
π0fs0(P−1

1 (c)) + π1fs1(P−1
1 (c))

)
(P−1

1 )′(c) dc,

where (P−1
1 )′(c) is the first derivative of P−1

1 (c). For s(x) = p(x), this is equal to

expression (6) with

w(c) = (1− π)fp0(P−1
1 (c))(P−1

1 )′(c) + πfp1(P−1
1 (c))(P−1

1 )′(c) = wr(c).
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