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Lévy-driven Ornstein–Uhlenbeck processes

Sylvia Endresa,1, Johannes Stübingera,1
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Abstract

This study derives an optimal pairs trading strategy based on a Lévy-driven Ornstein–

Uhlenbeck process and applies it to high-frequency data of the S&P 500 constituents from

1998 to 2015. Our model provides optimal entry and exit signals by maximizing the expected

return expressed in terms of the first-passage time of the spread process. An explicit repre-

sentation of the strategy’s objective function allows for direct optimization without Monte

Carlo methods. Categorizing the data sample into 10 economic sectors, we depict both

the performance of each sector and the efficiency of the strategy in general. Results from

empirical back-testing show strong support for the profitability of the model with returns

after transaction costs ranging from 31.90 percent p.a. for the sector “Consumer Staples” to

278.61 percent p.a. for the sector “Financials”. We find that the remarkable returns across

all economic sectors are strongly driven by model parameters and sector size. Jump intensity

decreases over time with strong outliers in times of high market turmoils. The value-add

of our Lévy-based model is demonstrated by benchmarking it with quantitative strategies

based on Brownian motion-driven processes.
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1. Introduction

Pairs trading is a market neutral strategy which has been developed by a group of com-

puter scientists, mathematicians, and physicists at Morgan Stanley in the early to mid-1980s

(Vidyamurthy, 2004). In its most common form, this strategy finds pairs of related stocks

whose prices follow a similar pattern over a historical time period. In case of abnormal

divergence, an arbitrageur goes long in the undervalued stock while simultaneously going

short in the overvalued stock. The exposure to market risk is substantially reduced for this

kind of trading strategy. If history repeats itself, the price relationship converges to the

long-term equilibrium and a profit is taken. Gatev et al. (2006) expound the first major

academic study on statistical arbitrage pairs trading exhibiting excess returns of 11 percent

p.a. for U.S. CRSP securities from 1962 until 2002. This seminal paper characterizes the

trigger for an ever-expanding interest in this field of research up to the present. Substantial

contributions are supplied by Vidyamurthy (2004), Elliott et al. (2005), Avellaneda and Lee

(2010), Do and Faff (2012), Huck and Afawubo (2015), and Liu et al. (2017).

The vast majority of the literature determines model-free trading rules via a pre-defined

parameter setting, e.g., positions are opened at a two-standard deviation spread — the

criticism of data snooping is omnipresent. Only a small fraction depicts analytic formulae and

solutions for calculating optimal model-driven statistical arbitrage pairs trading thresholds.

This research is confined to Elliott et al. (2005), Bertram (2010a,b), Ekström et al. (2011),

Govender (2011), Gregory et al. (2011), Cummins and Bucca (2012), Zeng and Lee (2014),

Leung and Li (2015a,b), Li (2015), Göncü and Akyıldırım (2016a), Bai and Wu (2017),

Baviera and Baldi (2017), and Suzuki (2017). These studies model the price spread between

two stocks with an Ornstein–Uhlenbeck (OU) process based on Brownian motion.

Elliott et al. (2005) supply a seminal cornerstone by specifying the spread of two stocks

via a mean-reverting Gaussian Markov chain model which is observed in Gaussian noise.

Predictions from the calibrated model are used to take appropriate investment decisions.

Bertram (2010a) derives analytic formulae for optimal statistical arbitrage trading assum-

ing an OU process. Particularly, solutions for the optimal entry and exit thresholds are

determined by maximizing the expected return per unit time. Bertram (2010b) presents

ideal trading strategies for a two-factor model with zero drift and independence between
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the two associated Brownian motions. In an empirical back-testing study, Cummins and

Bucca (2012) apply the model of Bertram (2010a) to the crude oil and refined products mar-

kets from 2003 to 2010. Govender (2011), Gregory et al. (2011), Li (2015), and Leung and

Li (2015a) occupy oneself with the optimal timing of trades supposing different underlying

frameworks, i.e., OU model, exponential OU model, Cox–Ingersoll–Ross model, and GARCH

model. These strategies are applied to different stock markets and varying time periods. Ek-

ström et al. (2011) analyze the optimal single liquidation timing and consider the ideal trade

liquidation regarding a discount factor. Zeng and Lee (2014) find optimal thresholds using

a polynomial expression for the expectation of the first-passage time of an OU process with

two-sided boundary. Ideal entry and exit decision rules for a double stopping problem are

analytically shown by Leung and Li (2015b). Göncü and Akyıldırım (2016a) present a new

filtering technique to identify the most suitable pairs in the market. Bai and Wu (2017)

analyze optimal stopping for Markov-modulated OU processes. Baviera and Baldi (2017)

derive analytically the optimal trading thresholds as well as the ideal leverage for every given

stop-loss level and Suzuki (2017) considers the optimal multiple switching problem for OU

processes.

Given the characteristics of financial data, OU processes based on Brownian motion are

not eligible to model high-frequency dynamics — direct consequences are invalid parameter

estimates and disregard of stylized facts (Barlow 2002, Carr et al. 2002, Cont and Tankov

2003, Cartea and Figueroa 2005, Meyer-Brandis and Tankov 2008, Jing et al. 2012, Aı̈t-

Sahalia and Jacod 2014, Jondeau et al. 2015, Göncü and Akyıldırım 2016b). Surprisingly,

only Larsson et al. (2013) and Göncü and Akyıldırım (2016b) present academic studies in

the context of determining optimal thresholds using Lévy-driven OU processes. In this

respect it is important to note that both exhibit merely numerical solutions. Larsson et al.

(2013) generalize the approach of Ekström et al. (2011) by additionally including a jump

term. Then, the authors prove a verification theorem and evaluate a numerical method for

the corresponding free boundary problem. Göncü and Akyıldırım (2016b) give attention

to Lévy-driven OU processes with generalized hyperbolic distributed marginals. Together,

these two studies provide an initial step for determining optimal trading strategies based on

Lévy-driven OU processes.
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We enhance the existing research in several aspects. First, our manuscript contributes

to the literature by developing an optimal trading framework based on Lévy-driven OU pro-

cesses, i.e., we derive optimal trade thresholds by maximizing the expected return per unit

time. In stark contrast to the existing literature, Monte Carlo methods are avoided due to a

mathematical expression for the expected first-passage time and an explicit representation of

the strategy’s objective function. Besides mean-reversion, volatility clusters, and drifts, this

general and flexible class of stochastic models is able to capture jumps and fat tails. Consid-

ering all these effects, our strategy is able to perform both intraday and overnight trading.

Most notable, we generalize the Brownian motion-driven OU processes by including the es-

sential jump component. As such, our model is in a position to choose the borderline case

in times of full stagnation or quiet behavior without fat tails in returns at the stock market.

Second, we present the first academic survey applying a high-frequency back-testing study

to all industry sectors of the S&P 500 over a sample period of 18 years. Therefore, we cat-

egorize all companies into 10 economic sectors based on the Global Industry Classification

Standard (GICS) and consider all pairs consisting of stocks from the same sector. Thus, we

are in a position both to demonstrate the performance of each sector and the efficiency of

our strategy in general. For all sectors, we observe statistically and economically significant

returns after transaction costs from 1998 to 2015, ranging from 31.90 percent p.a. for the

sector “Consumer Staples” to 278.61 percent p.a. for the sector “Financials”. Third, we

analyze common effects across all economic sectors and observe that returns are strongly

driven by model parameters and sector size. This finding explains the varying performance

between the different branches of trade. Forth, we demonstrate the value-add of our optimal

trading strategy for Lévy-driven OU processes by benchmarking it with well known quanti-

tative strategies in the same field. Specifically, we consider a classic asymmetric strategy in

the sense of Zeng and Lee (2014) and an optimal trading strategy by Bertram (2010a), both

based on a Brownian motion-driven OU process. We find that our strategy outperforms

the classic pairs trading approaches over time and obtains almost no loading on systematic

sources of risk.

The rest of this paper is organized as follows. Section 2 describes the data set and soft-

ware utilized in this study. In section 3, we depict the theoretical framework for determining
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optimal trading strategies. Section 4 provides the study design for our back-testing appli-

cation. Results and key findings are reported and discussed in section 5. Finally, section

6 summarizes the main results of this paper and makes methodological recommendations

about further research.

2. Data and Software

We run our back-testing framework on minute–by–minute prices of the S&P 500 index

constituents from January 1998 until December 2015. Our highly liquid trading universe

comprises the 500 leading companies which satisfy strict requirements based on market size,

liquidity, and industry grouping. Focusing on large-cap U.S. equities, this subset covers 80

percent of available market capitalization (S&P 500 Dow Jones Indices, 2015). Consequently,

this market segment poses as a crucial test for any potential stock market inefficiency. Fol-

lowing Stübinger and Endres (2017), we eliminate the survivor bias from our data with the

aid of a 2-stage process. First, using QuantQuote (2016), we produce a daily constituent list

for the S&P 500 stocks from 1998 to 2015. Then, exploiting these information, we create

a binary matrix, i.e., for each element of this matrix, we assign a “1” if the corresponding

company is a constituent of the S&P 500 index at the current day, otherwise a “0”. Second,

for all companies having ever been part of the S&P 500 index, we download the minute–by–

minute stock prices from January 1998 until December 2015 from QuantQuote (2016). An

adjustment of the data set is conducted due to stock splits, dividends, and further corporate

actions. Applying these two steps, we are in a position to completely replicate the S&P 500

index constituency and the respective prices over time.

The presented methodology in this paper and all relevant analyses are implemented in

the statistical programming language R (R Core Team, 2017). For computationally inten-

sive tasks the majority of source code is implemented in C++ and linked to R. For time

series handling, we rely on the packages TTR by Ulrich (2016) and xts by Ryan and Ul-

rich (2014). The vast majority of the performance evaluation is employed via the package

PerformanceAnalytics by Peterson and Carl (2014).
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3. Methodology

According to Zeng and Lee (2014), the concept of finding an optimal pairs trading strategy

follows a three-step process. First, we specify a stochastic model explaining the spread

dynamics. In this study, we assume a Lévy-driven Ornstein–Uhlenbeck (OU) process — a

highly flexible approach for capturing typical characteristics of financial data, among them

jumps, mean-reversion, volatility cluster, and drifts. Most notable, our model also includes

the Brownian motion-driven OU process. In the second step, we define the target function of

the strategy, e.g., maximize the expected profit or minimize the time until trade termination.

Finally, we aim for deriving entry and exit times by optimizing the target function. This

section describes the 3-step logic outlined above in detail.

3.1. Stochastic model

We define the spread for two stocks A and B with prices SA(t) and SB(t) as

Xt = ln(SA(t)/SA(0))− ln(SB(t)/SB(0)), t ≥ 0.

For modeling the spread dynamics, we consider the following OU process driven by Lévy noise:

dXt = θ(µt −Xt)dt+ dLt, X0 = x, (1)

with mean-reversion speed θ ∈ R, time-dependent mean-reversion level µt ∈ R, and Lévy pro-

cess {Lt}t≥0. As a special case, the model covers earlier spread models based on Brownian

motion-driven OU processes (Elliott et al. 2005, Bertram 2009, Bertram 2010a, Ekström

et al. 2011, Cummins and Bucca 2012, Bogomolov 2013, Göncü and Akyıldırım 2016a). The

solution of equation (1) is described by

Xt = xe−θt + θ

∫ t

0

µ(u)e−θ(t−u)du+

∫ t

0

e−θ(t−u)dLu.

In line with Kou (2002), Kou and Wang (2003), Sepp (2003), Ramezani and Zeng (2007),

Bayraktar and Xing (2011), Cai and Kou (2011), Gerber et al. (2013), Kou et al. (2017), and

Su and Bai (2017), we assume a double exponential jump–diffusion representation for the

Lévy process {Lt}t≥0, which fits stock data better than a model with normally distributed

jump sizes (Ramezani and Zeng 1998, Li et al. 2008, Kou et al. 2017).
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The sequence of random variables is divided into two parts — a continuous part driven

by a Brownian motion and a compound Poisson process possessing a double exponential

distribution. Mathematically, we define the Lévy process by

Lt = σWt +
Nt∑
i=1

ξi, (2)

with standard Brownian motion {Wt}t≥0, volatility σ ∈ R+, Poisson process {Nt}t≥0 with

rate λ, and jump sizes {ξ1, ξ2, . . . }. The processes {Wt}t≥0, {Nt}t≥0, and the random vari-

ables {ξ1, ξ2, ...} are independent. The common density of ξ is given by

fξ(x) = puηue
−ηu(x−δ)1{x≥δ} + pdηde

ηd(x+δ)1{x≤−δ},

where pu, pd ∈ R+
0 with pu + pd = 1, ηu, ηd ∈ R+, and δ ∈ R+

0 . The constants pu and pd

represent the probabilities of upward (u) and downward (d) jumps. The indicator functions

only admit jump sizes greater (smaller) than δ (−δ). The moment generating function of

the jump size ξ is given by

E[esξ] = pu
ηu

ηu − s
eδs + pd

ηd
ηd + s

e−δs, s ∈ (−ηd, ηu),

from which the moment generating function of the process {Lt}t≥0 is obtained as

E[esLt ] = e
λt(pu

ηu
ηu−s

eδs+pd
ηd
ηd+s

e−δs−1)
eσ

2s2t/2. (3)

In the double exponential jump–diffusion model, the upward and downward jumps are both

generated by a single Poisson process with fixed intensity λ. Ramezani and Zeng (1998) pro-

pose a similar model, in which upward and downward jumps are caused by two independent

Poisson processes {N j
t (λj)}t≥0 with intensity parameters λj (j ∈ {u, d}). The corresponding

Lévy process is defined by

Lt = σWt +
∑

j∈{u,d}

Nj
t (λj)∑
i=1

ξji . (4)

The density functions for jump magnitudes are fξu(x) = ηue
−ηu(x−δ)1{x≥δ} and fξd(x) =

ηde
ηd(x+δ)1{x≤−δ}. Besides economic reasons, the distinction between upward and downward

variations leads to better analytical tractability. Following Ramezani and Zeng (2007), we
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are in a position to transform the parameters of (2) and (4) into each other by setting

λ = λu + λd and pu = λu
λ

. Furthermore, we set ηu = ηd = η and pu = 1/2 (Carr and Wu

2004, Tsay 2005, Ramezani and Zeng 2007, Huang and Huang 2012) — an assumption that

has been commonly invoked.

The proposed Lévy framework is able to reproduce the leptokurtic feature of the return

distribution, with a higher peak and heavier tails than those of the normal distribution —

this links well with empirical features of the spread process that are clearly non-Gaussian

(Bertram 2009, Aı̈t-Sahalia and Jacod 2014, Göncü and Akyıldırım 2016b).

3.2. Objective function

As a naturally target of any rational investor, we maximize the expected return per unit

time in our trading strategy. We define the entry and exit signals x and b (x, b ∈ R) and

assume x < b without loss of generality. The time over which the return takes place is the

first-passage time τb,x:

τb,x = inf{t ≥ 0|Xt ≥ b}

for X0 = x. Figure 1 illustrates the setting for simulated spread dynamics and thresholds x

and b. Positions are entered and exited when the spread crosses the thresholds. The squares

representing the respective times are not exactly on the dashed lines because the spread

exhibits jumps and additionally, trading is discrete. The investor enters at t0 = inf{t ≥

0|Xt ≤ x} and exits at τb,x = inf{t ≥ 0|Xt ≥ b} for the first time.
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Figure 1: Trading strategy for simulated spread dynamics (black curve) and thresholds x and b (dashed

lines). Squares label the times of opening and closing positions.
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The return r is a function of the thresholds x and b and transaction costs c (c ∈ R+
0 ).

This results in the optimization problem

max
b,x

r(b, x, c)

E[τb,x]
, (5)

which is actually a problem of determining or approximating the distribution of the first-

passage time τb,x. In contrast to the Brownian motion-driven OU process, the first-passage

time problem for general Lévy processes has not been solved analytically. Nevertheless, the

construction of the Lévy process in equations (2) and (4) offers a rare case allowing for

analytical solutions for the first passage times, derived in Borovkov and Novikov (2008).

These involve an explicit representation of the mean of τb,x.

3.3. Optimal variables

In this subsection, we determine the optimal deviation thresholds to generate trade signals

and execute pairs trading. Therefore, we decompose the Lévy process {Lt}t≥0 into two

parts — {Qt}t≥0, representing the downward jumps and the Brownian motion, and {Rt}t≥0,

representing the upward jumps. Both jump sizes follow exponential distributions. Due to

the memory-less property of the exponential distribution it holds that

E(τb,x) =
1

θ

∫ K

0

(eub − eux(1− u/K))(1− u/K)λ/(2θ)−1e−∆(u)u−1du (6)

for

∆(u) =
1

θ

∫ u

0

log(EevQ1)

v
dv (7)

and

K = sup{u ≥ 0|EeuL1 <∞} (8)

with X0 = x (Borovkov and Novikov 2008). The moment generating functions in equations

(7) and (8) are given by

E[esQt ] = eλdt(
η
η+s

e−δs−1)eσ
2s2t/2

and

E[esLt ] = mQt(s)e
λut( η

η−s e
δs−1).
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Due to the explicit representation of E(τb,x), we are in position to directly solve problem

(5). Typically, such optimization problems are solved by a box-constrained optimization

routine using the Port library (Gay 1990, Fox 1997). We obtain thresholds that maximize

the expected return per unit time in the respective trading strategy.

4. Study design

For our back-testing framework, we follow Jegadeesh and Titman (1993) and Gatev et al.

(1999, 2006) and divide our high-frequency data set from January 1998 to December 2015

into 4484 overlapping study periods (figure 2). Each study period is shifted by one day and

consists of a 30-day formation period (subsection 4.1) and an out-of-sample 5-day trading

period (subsection 4.2). We set the length of the formation and trading period consistent

with Knoll et al. (2017), Liu et al. (2017), and Stübinger and Endres (2017).

Jan 98

4484

4483

2

1

Mar 98 Dec 15

.

.

.

Formation period Trading period Current trading period1

+1 d

+4482 d

+4483 d

0

30 d 5 d

30 d 5 d

30 d 5 d

30 d 5 d

Figure 2: The back-testing application deals with 4484 overlapping study periods from January 1998 to

December 2015. Each study period consists of a 30-day formation and a 5-day out-of-sample trading period.

4.1. Formation period

In the 30-day formation period, we fit Ornstein–Uhlenbeck (OU) processes driven by

Lévy noise as specified in equation (1) to all possible combinations of pairs. Following Liu

et al. (2017), we receive the mean-reversion level µt by a step function obtained from the
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average of the last two available data points out of daily opening and closing values. Accord-

ing to Mai (2012, 2014), there is a maximum likelihood estimation for the mean-reversion

speed θ available. Given Xt1 , ..., Xtn , the estimator is obtained from the discretization of the

stochastic differential equation for ∆iX = Xti+1
− Xti and ∆n = max

1≤i≤n−1
{|ti+1 − ti|} under

the assumption that the jumps are of finite activity:

θ̂n =

∑n−1
i=0 (µti −Xti)∆iX1{|∆iX|≤νn}∑n−1

i=0 (µti −Xti)
2(ti+1 − ti)

.

Increments larger than the threshold νn = ∆β
n, β ∈ (0, 1/2), are deleted to approximate the

continuous part with the remaining series. This is due to the fact that increments of the

continuous part over an interval length of ∆n are, with high probability, smaller than ∆0.5
n

(Mancini 2009, Mai 2012, Aı̈t-Sahalia and Jacod 2014). The time interval ∆n in our context

is ∆n = 1
250·391

(Cont and Mancini 2011, Liu et al. 2017). We set the most restrictive variant

β = 0.4999 to specify the threshold exponent, a value well in line with Cont and Mancini

(2011), who use β = 0.999/2 in an application to the S&P 500 index. It should be stressed

that the estimator does not detect any jumps in the special case of a Brownian motion-driven

OU process (Mai 2012). The procedure in which the jump process is distinguished from the

continuous part enables to separately estimate the parameter set of the jumps (λ, η) and the

continuous part (θ, σ, µt). In accordance with Cartea and Figueroa (2005), the volatility σ

is estimated by the sample standard deviation. The remaining jump parameters λ and η are

calibrated by their maximum likelihood estimators.

We transfer the top 10 pairs (Miao 2014, Stübinger et al. 2016) exhibiting both a high

mean-reversion speed θ and a high volatility σ to the trading period. A larger θ leads to a

higher trading frequency, and a larger σ leads to a bigger fluctuation of the process, both

resulting in a higher profit in each trade (Zeng and Lee 2014). This selection criterion is

in line with Liu et al. (2017), who select pairs with low long-term and high short-term

variance, both functions of θ and σ, and Stübinger and Endres (2017), who select pairs with

high mean-reversion speed θ and high jump intensity λ.

4.2. Trading period

When constructing trading bands of the pairs trading strategy, literature distinguishes

between two approaches — the asymmetric and the symmetric approach (see Zeng and Lee
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2014). In the asymmetric strategy, which is the common one among practitioners, mean-

reverting processes are traded using asymmetric bands. Positions are opened at some extreme

value, e.g., a two-standard deviation event (Gatev et al. 2006), and closed when the spread

reaches the long-term mean. The symmetric approach on the other hand constructs trading

bands symmetric about the mean level of the process. Representatives of this stream are

Bertram (2010a), Cummins and Bucca (2012), and Zeng and Lee (2014). Bertram (2010a)

proves that for optimal trading in the OU model, the trade entry and exit levels are symmetric

about the mean of the traded security. This is in line with Zeng and Lee (2014), who use

a larger trade cycle where the trader holds the spread position until a larger profit level is

attained. They prove that for the OU process and a given value of transaction costs c, the

return for entry and exit levels b and −b symmetric about zero is higher than for an exit level

at 0 and an entry at b. This observation may be explained by the impact of transaction costs

— in the symmetric approach, the transaction costs are halved compared to the asymmetric

strategy. Cummins and Bucca (2012) use symmetric trading signals b and x with alternating

interpretation between entry and exit signals. They go long (short) when the trading signal

b (x) is breached and then close position once x (b) is crossed. Consequently, they aggregate

two trading approaches, one taking long positions and the second taking short positions.

We stick to the symmetric approach and choose thresholds µt ± b around the mean level

µt of our process, setting x = −b. Following Bertram (2010a), the return per trade is defined

by the range between upper and lower trading threshold, adjusted for transaction costs c

(c ∈ R+
0 ). Hence, we receive a return per trade of r(b,−b, c) = 2b − c and require b ≥ c

2

for any profitable strategy. The optimal value for b is achieved as result of the optimization

routine outlined in subsection 3.3.

From the symmetric construction and the relationship τb,−b = τ−b,b, we are able to use

both thresholds as entry and exit signals at the same time. From equation (5), we obtain

max
b,x

r(b, x, c)

E[τb,x]
= max

b

2b− c
E[τb,−b]

, (9)

with X0 = x = −b. We define the following trading rules:

• Go short in stock A and go long in stock B, if Xt ≥ µt + b, i.e., stock A is overvalued

and stock B undervalued.
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• Go long in stock A and go short in stock B, if Xt ≤ µt− b, i.e., stock A is undervalued

and stock B overvalued.

• Do not execute any trade, if µt − b < Xt < µt + b, i.e., the spread is in its ’normal’

region.

We make a trade immediately upon every entry signal, buying 1 dollar worth of the

undervalued stock and shorting 1 dollar worth of the overvalued stock. Allowing for only

one active position per pair, we neglect any additional entry signals until the position is

closed. Trades are held until the spread crosses the opposite trading band, the trading

period ends, or one of the stocks of the respective pair is delisted.

We follow Gatev et al. (2006) for return computation. The sum of daily payoffs across

all pairs is related to the sum of invested capital at the beginning of the respective day.

We show both the return on committed capital (scale payoffs by the number of considered

pairs) and the return on employed capital (scale payoffs by the number of active pairs). A

pair is called active if it possesses at least one round-trip trade during the corresponding

trading period. Specifically, the return on committed capital at day t is determined using

the following definition:

Return at day t =
Sum of net profits at day t

Number of considered pairs at day t
.

Similarly, the return on employed capital at day t is calculated as:

Return at day t =
Sum of net profits at day t

Number of active pairs at day t
.

For our back-testing application, we decide on all S&P 500 constituents from Jan-

uary 1998 to December 2015. According to the Global Industry Classification Standard

(GICS), all companies are categorized into the following 10 economic sectors (valuation

date: 2015/12/31): Consumer Staples (CS), Consumer Discretionary (CD), Energy (EN),

Financials (FI), Health Care (HC), Industrials (IN), Information Technology (IT), Materials

(MA), Telecommunications Services (TS), and Utilities (UT). We generate all pairs consist-

ing of stocks from the same sector. By this procedure, we are in a position both to analyze

the performance of each sector and to examine the efficiency of our strategy in general.
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5. Results

In the following section, we run a full-fledged performance evaluation after transaction

costs for the top 10 stocks of each sector from March 1998 to December 2015, compared to

a naive buy–and–hold strategy of the S&P 500 index (MKT). Therefore, we examine the

risk–return characteristics and trading statistics (subsection 5.1) and evaluate the strategy

performance across the sectors (subsection 5.2). We analyze the profitability in recent years

(subsection 5.3), and investigate the influence of jumps to financial and statistical factors

(subsection 5.4). Finally, we demonstrate the value-add of our optimal trading strategy

based on Lévy-driven Ornstein–Uhlenbeck (OU) processes to less complex approaches built

on regular OU processes (subsection 5.5). In line with the vast majority of the literature,

returns are calculated based on committed capital. We follow Avellaneda and Lee (2010)

and Liu et al. (2017) and depict transaction costs of 5 bps per share per half-turn.

5.1. Risk–return characteristics and trading statistics

Table 1 reports daily risk–return characteristics after transaction costs for the top 10

pairs per sector from March 1998 until December 2015. Most of the presented performance

metrics are examined by Bacon (2008). Across all branches of trade, we observe statistically

significant returns with Newey–West t-statistics between 5.84 for CS and 16.00 for EN.

The economic point of view confirms this finding — daily returns after transaction costs

range from 0.12 percent for CS to 0.54 percent for FI, compared to 0.01 percent for the

S&P 500 benchmark. In most instances the return distribution of the sectors possesses right

skewness — a desired property for any investor (Cont, 2001). Kurtosis well above 3 indicates

leptokurtic distribution for all variants. Following Mina and Xiao (2001), we depict historical

Value at Risk (VaR) measures, typically used to gauge the amount of assets required to cover

potential losses. Tail risks of all sectors are approximately at the same level as the market,

e.g., the historical VaR 5% vary from -2.53 percent for IT to -1.13 percent for UT, compared

to -1.97 percent for a naive buy–and–hold strategy. Most notable, the maximum drawdown

level varies widely within the different branches of trade from 0.23 for IN to 0.76 for CS.

Across all sectors, the hit rate, i.e., the percentage of days with positive returns, exceeds

clearly the market (53.06 percent) with a top value of 68.02 percent for FI.
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CS CD EN FI HC IN IT MA TS UT MKT

Mean return 0.0012 0.0023 0.0040 0.0054 0.0024 0.0028 0.0040 0.0034 0.0023 0.0032 0.0001

Standard error (NW) 0.0002 0.0003 0.0002 0.0004 0.0003 0.0002 0.0004 0.0003 0.0003 0.0002 0.0002

t-Statistic (NW) 5.8389 7.6116 15.9977 14.7785 9.1559 11.9127 11.0501 12.3458 7.2136 13.9580 0.8889

Minimum -0.1354 -0.1603 -0.1406 -0.1340 -0.2814 -0.1267 -0.1303 -0.0954 -0.2042 -0.1498 -0.0947

Quartile 1 -0.0037 -0.0048 -0.0025 -0.0016 -0.0045 -0.0036 -0.0053 -0.0036 -0.0056 -0.0017 -0.0056

Median 0.0009 0.0022 0.0033 0.0035 0.0024 0.0025 0.0034 0.0027 0.0017 0.0018 0.0005

Quartile 3 0.0056 0.0095 0.0100 0.0101 0.0095 0.0090 0.0129 0.0098 0.0097 0.0074 0.0061

Maximum 0.1580 0.1836 0.1552 0.1742 0.1020 0.1577 0.1711 0.1390 0.1641 0.1083 0.1096

Standard deviation 0.0110 0.0173 0.0125 0.0166 0.0154 0.0135 0.0201 0.0135 0.0184 0.0120 0.0126

Skewness 0.9116 0.2388 0.2152 1.2468 -1.8829 0.4082 0.4566 0.5782 -0.0652 -0.7257 -0.1983

Kurtosis 23.2571 14.9316 13.3305 15.4023 34.0079 10.3881 7.5709 7.0291 13.1650 21.4208 7.5250

Historical VaR 1 % -0.0270 -0.0458 -0.0259 -0.0344 -0.0400 -0.0337 -0.0528 -0.0332 -0.0451 -0.0262 -0.0350

Historical CVaR 1 % -0.0386 -0.0709 -0.0410 -0.0587 -0.0652 -0.0473 -0.0712 -0.0432 -0.0683 -0.0494 -0.0506

Historical VaR 5 % -0.0145 -0.0219 -0.0136 -0.0120 -0.0186 -0.0170 -0.0253 -0.0164 -0.0234 -0.0113 -0.0197

Historical CVaR 5 % -0.0229 -0.0382 -0.0224 -0.0268 -0.0337 -0.0277 -0.0416 -0.0266 -0.0388 -0.0234 -0.0302

Maximum drawdown 0.7575 0.4322 0.6629 0.3267 0.4838 0.2315 0.6944 0.7142 0.5174 0.3369 0.6433

Share with return > 0 0.5624 0.5883 0.6512 0.6802 0.5892 0.6115 0.6079 0.6200 0.5662 0.6363 0.5306

Table 1: Daily return characteristics and risk metrics after transaction costs for the top 10 pairs of the

sectors CS, CD, EN, FI, HC, IN, IT, MA, TS, UT, compared to a S&P 500 long-only benchmark (MKT)

from March 1998 until December 2015. NW denotes Newey–West standard errors with five-lag correction

and CVaR the Conditional Value at Risk.

Table 2 contains statistics on trading frequency, which show a similar picture for all

sectors. At least 9.98 of the 10 regarded pairs possess trading activity during the 5-day

trading period. This high number is explained by the second part of our pair selection

algorithm outlined in subsection 4.1 — high volatility of the spreads creates superior trading

opportunities. The average time pairs are open ranges between 0.74 days for IT and 1.27

days for UT, 8 out of 10 sectors exhibit intraday trade durations. This short-term horizon

of our strategy is based on the first part of our selection — high mean-reversion speed leads

to a fast reinvestment of capital and diminishes the risk of losing financial resources caused

by a divergent pair.
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CS CD EN FI HC IN IT MA TS UT

Avg. traded pairs per 5-days period 9.9996 10.0000 10.0000 9.9989 10.0000 10.0000 10.0000 10.0000 9.9853 9.9770

Avg. round-trip trades per pair 5.6809 7.6069 7.0411 7.1301 7.3590 6.9598 8.6773 7.0300 7.4031 5.4587

St. dev. round-trip trades per pair 2.9196 3.5827 3.2275 4.0860 3.3319 3.2904 4.3661 3.3780 4.1741 3.3399

Avg. time pairs are open in days 1.1200 0.8209 0.8772 0.9459 0.8334 0.8951 0.7394 0.8973 0.9242 1.2670

St. dev. of time open, per pair, in days 0.6892 0.4737 0.5076 0.6417 0.4589 0.5137 0.4456 0.5424 0.6670 0.9070

Table 2: Trading statistics for the top 10 pairs of the sectors CS, CD, EN, FI, HC, IN, IT, MA, TS, and UT

per 5-day trading period.

In table 3, annualized risk–return measures for all sectors are depicted. We observe

annualized mean returns after transaction costs ranging from 31.90 percent for CS to 278.61

percent for FI — the naive buy–and–hold strategy is clearly outperformed (1.76 percent).

This picture barely changes considering the Sharpe ratio, i.e., the excess return per unit of

deviation, since all sectors attain approximately the standard deviation of the market. Most

sectors generate downside deviations below the market — a favorable effect for investors

because volatility is largely driven by upside deviations. The lower partial moment risk

results in Sortino ratios above 2.94, compared to 0.12 for the general market. The results

based on committed and employed capital show only marginal deviations — this fact is

not astonishing since the top pairs trade in almost all cases (table 2). Summarizing, we

may carefully conjecture that our optimal pairs trading strategy based on Lévy-driven OU

processes outlined in section 4 is meaningful.

CS CD EN FI HC IN IT MA TS UT MKT

Mean return 0.3190 0.7176 1.6729 2.7861 0.7647 0.9931 1.6247 1.2712 0.7293 1.1717 0.0176

Mean excess return 0.2928 0.6835 1.6200 2.7112 0.7297 0.9536 1.5727 1.2263 0.6950 1.1287 -0.0027

Standard deviation 0.1745 0.2741 0.1990 0.2627 0.2448 0.2146 0.3190 0.2147 0.2916 0.1908 0.2005

Downside deviation 0.1086 0.1766 0.1073 0.1272 0.1671 0.1271 0.1883 0.1201 0.1846 0.1137 0.1441

Sharpe ratio 1.6772 2.4939 8.1403 10.3186 2.9807 4.4444 4.9297 5.7121 2.3835 5.9154 -0.0136

Sortino ratio 2.9365 4.0629 15.5841 21.9019 4.5778 7.8124 8.6290 10.5877 3.9507 10.3048 0.1218

Employed capital

Mean return 0.3190 0.7176 1.6729 2.7861 0.7647 0.9931 1.6247 1.2712 0.7287 1.1718 0.0176

Sharpe ratio 1.6772 2.4939 8.1403 10.3186 2.9807 4.4444 4.9297 5.7121 2.3802 5.9149 -0.0136

Table 3: Annualized risk–return measures after transaction costs for the top 10 pairs and the different sectors,

compared to a S&P long-only benchmark (MKT) from March 1998 until December 2015.
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Given the remarkable returns of our strategies, we compare them with 200 bootstraps

of random trading to check on robustness. Similar to Gatev et al. (2006), we combine the

original entry and exit signals of the top pairs with two randomly chosen securities of the

S&P 500 at that time. As expected, the average daily returns before transaction costs of

the random trading are close to zero at -0.01 percent per day — a value well in line with

Gatev et al. (2006). In contrast, our strategies produce daily returns between 0.12 and 0.54

percent across all sectors even after transaction costs (table 1) — results are far superior to

the returns of random bootstrap trading. Thus, our strategy identifies temporal variations

and exploits market inefficiencies.

5.2. Strategy performance across the sectors

Motivated by subsection 5.1 and the varying performance across the branches of trade,

we directly compare the results from the different sectors considering model parameters and

number of stocks. In this way, we aim to identify driving sources of positive returns across

all sectors.

Our trading strategy outlined in subsection 4.2 relies on the mean-reversion of spread

processes (Hameed and Mian 2015, Leung and Li 2015a, Lubnaua and Todorova 2015),

combined with a high degree of variation creating trading opportunities (Zeng and Lee 2014,

Liu et al. 2017). Strong exposure to mean-reversion provides a high process’ predictability

and thus, spreads generate profits from trading (Leung and Li 2015b, Stübinger and Endres

2017). Therefore, we rank the top pairs by mean-reversion speed θ in ascending order and

record the ranking rθ. Besides fast convergence to the equilibrium level, high fluctuation

enables a high trading frequency. Volatile periods of a process are identified by high volatility

σ, while sudden, large movements in the spread process are created by a high jump intensity

λ. Thus, pairs are ranked by σ and λ, both in ascending order, and rankings rσ and rλ are

recorded. All three rankings constitute r′m = rθ + rσ + rλ, which is again ranked ascending

to create the joint model parameter ranking rm. We identify rm as one potential source that

drives returns in a positive way.

Besides the influence of model parameters on our strategies’ performance, we analyze

the effect of different sector sizes. The average sector size ranges approximately between 10
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stocks for TS and 80 stocks for FI. Since with increasing number of stocks the number of

potential pairs increases exponentially, greater sectors offer wider selection possibilities. This

motivates us to create the second ranking rs, chosen ascending with an increasing number

of average included stocks.

Figure 3 presents the distribution of the branches of trade with respect to rm and rs in

a three-dimensional bubble chart. The bubble sizes represent the magnitudes of annualized

mean returns for the different sectors, compared to the general market (MKT) (see table 3).

First of all, the outstanding performance across all risk–return measures of FI is strongly

driven by both a large sector size and a high parameter rank, which vindicates our trading

strategy. EN and IT with high annualized returns of 167.29 and 162.47 percent also range

in the right chart area with pleasant parameter ranking. As expected, the sector CS, which

possesses the worst rank concerning model parameters, achieves the smallest annualized

return of 31.90 percent. Surprisingly, the smallest sector TS exhibits a very high rank rm.

Concluding, we find that the dissimilarity between the sector returns is mostly driven by the

corresponding mean-reversion speed, volatility, jump intensity, and sector size.

CS

CD

EN

FI

HC

IN

IT

MA

TS

UT MKT

0

1

2

3

4

5

6

7

8

9

10

11

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Se
ct

o
r 

si
ze

 r
an

k

Model parameter rank  𝑟𝑚

𝑟 𝑠

CS 
CD
EN
FI
HC
IN
IT
MA
TS
UT
MKT

0.3190
0.7176
1.6729
2.7861
0.7646
0.9931
1.6247
1.2712
0.7293
1.1717
0.0176

Figure 3: Performance results after transaction costs for the period from 1998 until 2015 and the different

sectors in three-dimensional bubble chart. The first two dimensions visualized as coordinates are model

parameter rank rm and sector size rank rs. The magnitudes of annualized mean returns are represented by

bubble size and depicted on the right side.
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5.3. Profitability in recent years

Do and Faff (2010), Bowen and Hutchinson (2016), and Stübinger and Bredthauer (2017)

identify declining performance results for their pairs trading strategies in recent years. Mo-

tivated by the literature, we analyze the profitability of the strategies in the recent past.

Figure 4 presents the annualized mean return for the top 10 pairs from January 2007

to December 2015, compared to the general market (MKT). This sub-period describes the

time of deterioration and moderation in stock markets caused by increasing globalization,

proceeding deregulation, and faster correction of market anomalies. As expected, all 10

sectors do not achieve the average returns of the whole data sample (table 3 and figure 3),

but still produce positive results after transaction costs in recent years. While most sectors

generate returns between 40 and 60 percent p.a., FI outperforms clearly with an annualized

return of 173.93 percent. This fact is not surprising since FI possesses both the largest sector

size as well as the highest model parameters. We conclude that our optimal pairs trading

strategy based on Lévy-driven OU processes generates pleasant returns even in recent past.
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Figure 4: Performance results after transaction costs for the period from 2007 until 2015 and the different

sectors in three-dimensional bubble chart. The first two dimensions visualized as coordinates are model

parameter rank rm and sector size rank rs. The magnitudes of annualized mean returns are represented by

bubble size and depicted on the right side.
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5.4. Jump analysis

Johannes et al. (1999), Eraker (2004), and Kou et al. (2017) report significant changes

in jump rates in equity index returns over time. Motivated by the literature, we investigate

the extent of jump activity in our data.

In subsection 3.1, we specify a very flexible model to explain spread dynamics. The

Lévy process is defined by

Lt = σWt +
Nt∑
i=1

ξi, (10)

with standard Brownian motion {Wt}t≥0, volatility σ ∈ R+, Poisson process {Nt}t≥0 with

rate λ, and jump sizes {ξ1, ξ2, ...}. As a special case for Poisson intensity λ = 0, the model

covers the Brownian motion-driven OU process without any jumps. As such, our model

is feasible for processes both with and without jumps. In line with this, the estimation

procedure of subsection 4.1 only detects jumps if variations cannot be explained by simple

Gaussian shocks.

Figure 5 shows the number of detected jumps for the different sectors over time. In a

5-day trading period, there are 1955 data points, thus 1954 time intervals and potential

jumps. First of all, we observe a substantial number of detected jumps across all sectors

and over the whole sample period — including jumps pays off. We confirm the finding of

Eraker (2004) and observe many jumps during the first years of our data set. Especially,

IT exhibits a comparatively high jump intensity during this phase, mainly affected by the

dot–com bubble. The jump rates increase strongly in times of the global financial crisis from

2007 to 2009 (see Kou et al. 2017). As expected, FI contributes significantly to the high jump

activity, with clearly lower jump frequencies before and after the crisis. In present days, the

intensity of jumps decreases across all sectors and a major part of these jumps is caused by

EN — this seems reasonable taking into account the sharp drop of oil prices beginning in

the mid of 2014 and lasting until end of 2015. We may conclude that in recent years, when

jump rates are at much lower levels, trading frequencies decrease and taking advantage of

temporary mispricings becomes harder. Summarizing and in line with Kou et al. (2017), we

observe a declining trend of jump numbers across all sectors with strong outliers in times of

high market turmoils.
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Figure 5: Average number of jumps during 5-day trading periods for the different sectors over time.

5.5. Assessment of the developed strategy

To demonstrate the additional benefit of our optimal trading strategy for Lévy-driven OU

models (OLM), we compare it with well established quantitative strategies in the field of pairs

trading based on stochastic differential equations. Following Bertram (2010a) and Cummins

and Bucca (2012), we implement an optimal trading strategy for Brownian motion-driven

OU models (OBM). Specifically, an analytic solution for the case of maximizing the expected

return is derived. The second benchmark is given by Zeng and Lee (2014) and represents

a classic asymmetric strategy based on Brownian motion-driven OU models (CBM). The

strategy takes positions at two-standard deviations and clears positions when the spread

reverts back to the mean (Bollinger 1992, 2001, Avellaneda and Lee 2010, Clegg and Krauss

2016, Stübinger et al. 2016). In stark contrast to the optimal trading rules of OLM and OBM,

the entry and exit signals in CBM are model-free. Identical to OLM, we select pairs based on

highest mean-reversion speed and highest variance in both benchmarks (see subsection 4.1).

Following Kanamura et al. (2010), Cummins and Bucca (2012), and Liu et al. (2017), our

comparison study focuses on the energy sector and depicts the performance and risk profile

for OLM, OBM, and CBM in light of strategy performance over time (subsection 5.5.1) and

systematic sources of risk (subsection 5.5.2).
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5.5.1. Performance over time

Figure 6 displays the development of an investment of 1 USD after transaction costs

for OLM, OBM, and CBM over four sub-periods, compared to the cumulative returns of

the American stock market index S&P 500 (MKT) and the crude oil price of West Texas

Intermediate (WTI), the most often referenced grade in oil pricing.

The first sub-period ranges from 1998 to 2003 and describes the growth and collapse of

the dot–com bubble, the September 11 attacks and the start of the Iraq war. Simultaneously,

there is neither an invention of methods or algorithms used in this paper nor the awareness

level of high-frequency trading. As such, it is not surprising that the pairs trading strategies

show strong and consistent outperformance. Optimal thresholds produce superior results

compared to the model-free 2-σ rule, leading to annualized returns of 584.55 and 481.01

percent for OLM and OBM, and 156.81 percent for CBM.

The second sub-period ranges from 2004 to 2006 and characterizes the time of modera-

tion and rising costs of oil in consequence of several events, e.g., the destruction caused by

hurricane Katrina and the reducing strength of the U.S. dollar. We observe increasing devel-

opments for all time series with OLM showing particularly high performance. Specifically,

our strategy outlined in section 4 generates 143.16 percent p.a..

The third sub-period ranges from 2007 to 2012 and corresponds with the global financial

crisis and its aftermath. The S&P 500 index as well as the crude oil price are strongly

affected by this crash — the S&P 500 loses approximately 50 percent of its value and the

oil price decreases fourfold in this time. In stark contrast, OLM, OBM, and CBM generate

strongly positive returns, mostly driven by the long–short portfolios we are constructing.

The forth sub-period ranges from 2013 to 2015 and specifies the period of comebacks

and 2010s oil glut. The pairs trading benchmarks OBM and CBM show declining trends in

comparison to the general market caused by increasing public availability of these methods.

Most notable, OLM exhibits a clear growth in value up to 2.5 during the years 2013 to 2015,

after transaction costs.
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Figure 6: Development of an investment of 1 USD after transaction costs for the top 10 pairs of OLM, OBM,

and CBM in the first row, compared to the S&P 500 index (MKT) in the second row and the crude oil price

(WTI) in the third row. The time period from 1998 until 2015 is split into four sub-periods (1998–2003,

2004–2006, 2007–2012, 2013–2015). In the top left corner of each plot log-scales are indicated where applied.

5.5.2. Common risk factors

Finally, table 4 investigates the exposure of OLM, OBM, and CBM to common systematic

sources of risk. We follow Krauss and Stübinger (2017) and apply (i) the Fama–French 3-

factor model (FF3) introduced by Fama and French (1996), (ii) the Fama–French 3+2-factor

model (FF3+2) outlined in Gatev et al. (2006), and (iii) the Fama–French 5-factor model

(FF5) discussed by Fama and French (2015). FF3 measures systematic risk exposure to
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general market, small minus big capitalization stocks (SMB), and high minus low book–

to–market stocks (HML). FF3+2 augments the first model by a momentum factor and a

short-term reversal factor. FF5 appends two additional factors to the FF3, namely portfolios

of stocks with robust minus weak profitability (RMW) and conservative minus aggressive

investment behavior (CMA). All data related to these models are downloaded from Kenneth

R. French’s website2.

Irrespective of the model employed, we observe that returns depict statistically and eco-

nomically significant daily alphas of 0.39 percent for OLM, 0.33 percent for OBM, and 0.16

percent for CBM. Across all strategies, loading on the reversal factor is well expressed and

highly significant, confirming the effect of mean-reversion that our strategy relies on. Addi-

tionally, we observe small and insignificant loadings on the remaining factors for OLM. In

stark contrast, OBM and CBM capture systematic risk by possessing significant and nega-

tive loadings on the market and SMB. Overall, OLM generates statistically significant and

economically considerable daily intercept alphas of 0.39 percent, does not load on any com-

mon sources of systematic risk, and outperforms the benchmark approaches — complexity

pays off.

2We thank Kenneth R. French for all relevant data for these models on his website.
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OLM OBM CBM

FF3 FF3+2 FF5 FF3 FF3+2 FF5 FF3 FF3+2 FF5

(Intercept) 0.0039∗∗∗ 0.0039∗∗∗ 0.0039∗∗∗ 0.0033∗∗∗ 0.0032∗∗∗ 0.0033∗∗∗ 0.0016∗∗∗ 0.0016∗∗∗ 0.0016∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

Market 0.0026 −0.0242 −0.0027 −0.0125 −0.0457∗∗ −0.0188 0.0071 −0.0120 0.0096

(0.0148) (0.0164) (0.0171) (0.0158) (0.0175) (0.0183) (0.0130) (0.0144) (0.0151)

SMB −0.0353 −0.0282 −0.0674∗ −0.0619 −0.0711∗∗ −0.0731∗∗

(0.0298) (0.0299) (0.0319) (0.0320) (0.0262) (0.0262)

HML −0.0058 −0.0148 −0.0453 −0.0413 −0.0358 −0.0101

(0.0280) (0.0300) (0.0299) (0.0321) (0.0246) (0.0263)

Momentum −0.0385 −0.0229 0.0252

(0.0209) (0.0223) (0.0183)

Reversal 0.0668∗∗ 0.1032∗∗∗ 0.0913∗∗∗

(0.0210) (0.0225) (0.0184)

SMB5 −0.0400 −0.0733∗ −0.0521

(0.0322) (0.0344) (0.0283)

HML5 0.0094 −0.0149 −0.0134

(0.0318) (0.0340) (0.0279)

RMW5 −0.0172 −0.0020 0.0439

(0.0415) (0.0444) (0.0365)

CMA5 −0.0185 −0.0506 −0.0415

(0.0509) (0.0544) (0.0447)

R2 0.0003 0.0035 0.0004 0.0015 0.0066 0.0019 0.0019 0.0076 0.002

Adj. R2 -0.0004 0.0024 -0.0007 0.0008 0.0055 0.0008 0.0012 0.0064 0.0009

Num. obs. 4484 4484 4484 4484 4484 4484 4484 4484 4484

RMSE 0.0125 0.0125 0.0125 0.0134 0.0134 0.0134 0.011 0.011 0.011

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 4: Exposure to systematic sources of risk for the daily returns of the top 10 pairs of OLM, OBM,

and CBM after transaction costs from March 1998 until December 2015. Standard errors are depicted in

parentheses.

6. Conclusion

In this paper, we introduce an optimal pairs trading framework based on Lévy-driven

Ornstein–Uhlenbeck (OU) processes and apply it to high-frequency data of the S&P 500

constituents from January 1998 to December 2015. In respect thereof, we make four main

contributions to the existing literature.

The first contribution bears on the developed optimal trading strategy for Lévy-driven

OU processes. Concerning this matter, we present the first manuscript deriving an explicit

representation of the expected return per unit time which serves as target function in our
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jump-based strategy. This takes place without the necessity of Monte Carlo approaches

or numerical methods. To be more specific, the expected first-passage time is formulated

by means of a mathematical expression, allowing for direct optimization of the objective

function. In this way, we obtain the desired trade thresholds. By generalizing the classic

Gaussian-driven OU model, we are in a position to capture additionally jumps and fat tails

— both depict typical characteristics of financial data.

The second contribution refers to our high-frequency back-testing study of the S&P 500

constituents from 1998 to 2015. We observe statistically and economically significant returns

after transaction costs for the top 10 pairs across all sectors demonstrating the efficiency

of our strategy. Specifically, annualized returns range between 31.90 percent for the sector

“Consumer Staples” and 278.61 percent for the sector “Financials”, compared to 1.76 percent

for a naive buy–and–hold strategy of the S&P 500. We find that the profits of all branches

of trade are not being arbitraged away in the recent past.

The third contribution focuses on the varying performance results between the branches

of trade. Our results reveal that there are common effects influencing returns across all

economic sectors. We find that the dissimilarity is mostly driven by the respective mean-

reversion speed, volatility, jump intensity, and sector size.

The forth contribution relies on the value-add of our optimal trading strategy for Lévy-

driven OU models in comparison to well established Brownian motion-driven approaches in

this area of research. We find that the jump-based pairs trading framework outperforms

classic strategies in light of performance over time and the exposure to systematic sources

of risk.

For future research in this field, time-changed Lévy processes may be explored to cap-

ture non-normal return innovations, stochastic volatility, and leverage effects. However, with

increasing model complexity, the first-passage time problem becomes more challenging. Sec-

ond, simultaneous trading of more than two stocks which co-move in some pattern could be

executed. Therefore, a multivariate model that accounts for common interactions has to be

estimated. Third, interdependencies and dissimilarities among the sector returns should be

elaborated and explained by additional influencing factors.
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Carr, P., Wu, L., 2004. Time-changed Lévy processes and option pricing. Journal of Financial

Economics 71 (1), 113–141.
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Göncü, A., Akyıldırım, E., 2016b. A stochastic model for commodity pairs trading. Quanti-

tative Finance 16 (12), 1843–1857.

Govender, K., 2011. Statistical arbitrage in South African financial markets. Working paper,

University of Cape Town.

Gregory, I., Ewald, C.-O., Knox, P., 2011. Analytical pairs trading under different assump-

tions on the spread and ratio dynamics. Working paper, University of Sydney.

Hameed, A., Mian, G. M., 2015. Industries and stock return reversals. Journal of Financial

and Quantitative Analysis 50 (1-2), 89–117.

Huang, J.-Z., Huang, M., 2012. How much of the corporate-treasury yield spread is due to

credit risk? The Review of Asset Pricing Studies 2 (2), 153–202.

Huck, N., Afawubo, K., 2015. Pairs trading and selection methods: Is cointegration superior?

Applied Economics 47 (6), 599–613.

Jegadeesh, N., Titman, S., 1993. Returns to buying winners and selling losers: Implications

for stock market efficiency. The Journal of Finance 48 (1), 65–91.

Jing, B.-Y., Kong, X.-B., Liu, Z., 2012. Modeling high-frequency financial data by pure jump

processes. Annals of Statistics, 759–784.

Johannes, M., Kumar, R., Polson, N. G., 1999. State dependent jump models: How do US

equity indices jump? Woking Paper, University of Chicago.

Jondeau, E., Lahaye, J., Rockinger, M., 2015. Estimating the price impact of trades in a

high-frequency microstructure model with jumps. Journal of Banking & Finance 61 (2),

205–224.

Kanamura, T., Rachev, S. T., Fabozzi, F. J., 2010. A profit model for spread trading with

an application to energy futures. The Journal of Trading 5 (1), 48–62.
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