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Abstract

This paper introduces two new concepts of symmetry for multivariate copulas with a focus on

tails regions. Properties of the symmetry concepts are investigated for bivariate copulas and

a connection to radial symmetry is established. Two nonparametric testing procedures for

the new concepts are developed using a vector of locally most powerful rank test statistics,

applied to a new generalization of the FGM copula which parameterizes every vertex of the

unit cube. This vector quantifies deviations from independence in each vertex and the tests

for the new symmetry concepts are based on comparisons of these deviations. It is shown that

one of the new tests can also be used to test for radial symmetry, which results in a similar

power of detecting bivariate radial symmetry compared to recently published nonparametric

tests. Further, an application to insurance data is provided. Finally, an improvement of

the selection process in the context of vine copula fitting is proposed that is based on the

elimination of copula families with unsuitable symmetry properties.
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1. Introduction

The rise of copulas, especially vine copulas, has had a huge impact on statistical modeling.

Copulas allow flexible modeling of complex dependency structures by connecting many arbi-

trary univariate marginal distributions to high dimensional probability distribution models.

Fields of research in which copulas are frequently applied are for example hydrology (Gen-

est et al., 2007; Gyasi-Agyei, 2011), financial application (e.g. Brechmann et al. (2012);

Brechmann and Czado (2013); Low et al. (2013); Weiß and Supper (2013); Lau et al. (2016);

Stübinger et al. (2016)), and actuarial risk-modeling (Frees and Valdez, 1998; Guégan and

Maugis, 2010; Guégan and Hassani, 2013).

This paper focuses on copulas with absolutely continuous distribution functions, so that

in this case a unique decomposition of any multivariate distribution into its one-dimensional

marginal distributions and a copula function C exists (Sklar, 1959). Throughout the paper

the marginal distributions are assumed to be known, hence the marginal distributions can

be treated as uniformly distributed by the probability integral transform.

A subclass of copulas that recently is in the focus of general interest are the vine copulas,

which is a decomposition of a p-dimensional probability distribution into p(p−1)/2 bivariate

conditional and unconditional copula functions (Joe, 1996, 1997; Bedford and Cooke, 2001,

2002; Czado, 2010). Each of these bivariate copula functions needs to be fitted to the respec-

tive marginal distributions from the sample. Since the mere number of available bivariate

copulas classes is endless and the computational effort is considerably high especially for

large p, it is advantageous to not consider every available copula in the fitting process. Ad-

ditionally, using inappropriate copula models by neglecting asymmetries in the data can lead

to incorrect conclusions, see Krupskii (2016). Thus, by testing for symmetry, copulas can be

eliminated that do not have suitable symmetry properties to properly describe the data. So

it is necessary to know which concepts of symmetry could be present (see Klein and Fischer

(2004) for a general overview). In applications for example, where especially the multivariate

lower or upper tail is of importance, it is advisable to analyze the tail dependence of both

tails and test for differences (Joe, 1993; Hua and Joe, 2011).

This paper introduces two new concepts of symmetry for bivariate copulas (X and Y)

with main focus on the tails which are located at the vertices of the unit square. Two testing
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procedures for detecting deviations from the new symmetry concepts and implicitly radial

symmetry are provided. Additionally, the involved test statistic enables to measure and test

for asymmetries in the tails of a distributions. Throughout this paper, only the bivariate case

is discussed, which is common in literature focusing symmetry concepts of copulas. However,

due to the intuitive geometric interpretation, a generalization of X, Y, and their respective

statistical tests to higher dimensions is straightforward.

This paper is organized as follows: Section 2 starts by briefly providing an overview on

established symmetry concepts for bivariate copulas. Two new symmetry concepts with main

focus on the tails of the copula are defined and relations to existing concepts are identified.

Section 3 lists non- and semiparametric testing procedures for existing symmetries from

recent literature and proposes tests for X and Y together with the required preliminaries

following Mangold (2015). In section 4, size and power of the newly derived tests are analyzed

by comparison to existing state-of-the-art tests of Genest and Nešlehová (2014) and Krupskii

(2016) via Monte Carlo simulation. Section 5 showcases the flexibility of the new tests by

an application to a dataset and within the vine copula fitting process. Section 6 summarizes

and shows further opportunities of extensions of the new concepts.

2. Symmetry concepts for bivariate copulas

The functional symmetry concepts J, R, E, X, and Y are introduced for bivariate copulas

in this section. A copula is defined as follows:

Definition 1 (Copula, Nelsen (2006)). A function C : [0, 1]p 7→ [0, 1] is a p-dimensional

copula if

• C(u1, . . . , ui−1, 0, ui+1, . . . , up) = 0: If at least one argument ui = 0, then the value of

C is 0, i = 1, ..., p.

• C(1, . . . , 1, ui, 1, . . . , 1) = ui: If all arguments are equal to 1 except for ui, C is a

distribution function of the uniform distribution, i = 1, ..., p.

• C is p-non-decreasing: For every H =
∏p

i=1[xi, yi] ⊆ [0, 1]p, the integral∫
H

dC(u) ≥ 0
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for u = (u1, ...up)
′ ∈ [0, 1]p with respect to C. The copula density function is denoted

as c.

2.1. Established symmetry concepts

Although there are many more symmetry concepts for distributions in general (see Nelsen

(1993)), there are three main concepts for copulas, J, R, and E, that are defined in the

following:

Definition 2 (Joint symmetry, Nelsen (1993)). A copula C is joint symmetric (J) if and

only if

C(u, v) = u− C(u, 1− v) and C(u, v) = v − C(1− u, v), (1)

u, v ∈ [0, 1].

A more general concept is the radial symmetry, if the copula function is identical to the

survival copula C̄(u, v) = C(1− u, 1− v) + u+ v − 1:

Definition 3 (Radial symmetry, Nelsen (1993)). A copula C is radially symmetric (R) if

and only if

C(u, v) = C(1− u, 1− v) + u+ v − 1 = C̄(u, v), (2)

u, v ∈ [0, 1].

Note that every joint symmetric copula is also radially symmetric (J → R), while the

opposite is not true in general (Nelsen, 1993). A third concept is discussed in the context of

meta-elliptical distributions (Fang et al., 2002): the concept of exchange symmetry, or also

called permutation symmetry.

Definition 4 (Exchange symmetry, Genest et al. (2012) – Permutation symmetry (Krupskii,

2016)). A copula C is exchange/permutation symmetric (E) if and only if

C(u, v) = C(v, u), (3)

u, v ∈ [0, 1].
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2.2. New symmetry concepts

The following analysis focuses on the vertices of [0, 1]p. As simplification, a notation for

vertices is introduced: Let v be a vertex of [0, 1]p, v = (v1, v2, ..., vp)
′, vj ∈ {0, 1}, j = 1, ..., p.

A unique identifier of v can be obtained by calculating the decimal value of the binary

number v1v2 · · · vp and adding 1 (as example, the three-dimensional vertex (1, 1, 0)′ has the

number 7, since 1102 = 610 augmented by one equals 7). Main focus of this article are

bivariate square-shaped regions with edge length c, located at each corner of [0, 1]2 (see

figure 1). The probabilities of observing a realization from those regions needs to coincide

in the following manner:

Definition 5 (Vertex symmetry). A copula C is called vertex symmetric (X) if the prob-

ability of an observation within a square of side length c located at each vertex of [0, 1]2 is

equally likely:

C(c, c) = c− C(1− c, c) = c− C(c, 1− c) = C(1− c, 1− c) + 2c− 1, for 0 < c <
1

2
.

A copula C is called c′-vertex symmetric (Xc′), if C is vertex symmetric for all c, 0 < c ≤

c′ < 1
2
.
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Figure 1: Schematic representation of the symmetry concepts X (left) and Y (right) for c = 0.35.
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Figure 1 (left) provides a sketch of the concept of vertex symmetry. A weaker concept of

symmetry is provided by the next definition:

Definition 6 (Diametrical symmetry). A copula C is called diametrically symmetric (Y) if

occurrences of realizations are equally likely in areas around vertices that are on the diamet-

rically opposed side of [0, 1]2:

C(c, c) = C(1− c, 1− c) + 2c− 1 and C(c, 1− c) = C(1− c, c), qquadfor 0 < c <
1

2
.

A copula C is called c′-diametrically symmetric (Yc′), if C is diametrically symmetric for

all c, 0 < c ≤ c′ < 1
2
.

Again, a sketch of the concept of diametrical symmetry can be found in figure 1 (right).

Note that this concepts with the focus on the vertices of [0, 1]2 can easily be extended

to arbitrary dimensions p which is described in section 6 but omitted here for the sake of

simplicity. There is a connection between the two new symmetry concepts X and Y:

Remark 1. If a copula is vertex symmetric, it is also diametrically symmetric, X → Y.

The opposite is not true in general.

Remark 2. As a consequence of remark 1, only one out of three situations can occur: a

copula has both, X and Y, has Y only, or has neither X nor Y. For the first case, examples

are the independence copula and a copula with distribution function

C(u, v) = u v (2 (u2 + v2)− 3 (u+ v) + 3), (4)

which is a scaled twodimensional parabola centered at the point (0.5, 0.5)′. The FGM-copula

(Farlie, 1960; Gumbel, 1960; Morgenstern, 1956) and the copula of Fréchet (1958) are ex-

amples of the second case. Examples for the third case are the Clayton (Clayton, 1978)

and the Gumbel copula (Gumbel, 1960; Barnett, 1980) together with any other non-radially

symmetric copula family as will be shown in the following.

The parameter c defines the zones of [0, 1]2 that are in focus of the property X and Y.

Choosing c close to 0.5 divides [0, 1]2 into four mutually exclusive parts covering almost the

entire unit square. The smaller c, the more the symmetry definitions are focused on the tail
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behavior of the copula C. Comparing heaviness of multivariate tails can be of interest in

many applications, especially in absence of tail dependence or if multivariate skewness in the

tails needs to be modeled. Convenient values of c and resulting implications are discussed

in section 3.2.

Next, the new symmetry concepts X and Y are incorporated into the existing framework

of J, R, and E. Nelsen (1993) provided an overview of the different combinations of the

symmetry concepts J, R, and E and illustrated one distribution from each combination.

He identified in total 14 different possible constellations2 – 6 of those constellations are of

interest in the present context (see figure 6 in the appendix for scatter plots of the relevant

distributions from Nelsen (1993)). This restriction arises from omitting two concepts that

cannot be transmitted to copulas. The remaining 6 constellations of J, R, and E are listed

in table 1.

Table 1: List of distributions covering all possible constellations of symmetry concepts J, R, and E from

Nelsen (1993), along with new concepts X and Y. There are three possible constellations: X and Y, Y only,

and neither X nor Y. A checkmarked cell indicates that the row’s distribution has the symmetry concept

denoted by the respective column. Missing numbers of the first column are caused by duplettes in Nelsen

(1993) regarding J, R, and E. Examples for the distributions are presented in figure 6 in the appendix.

Symmetry concepts

Nr. of. distr. J R E X & Y Y -

1 X X X X

3 X X

4 X X X

6 X

8 X X X

11 X X

By examining the squared regions close to the four vertices (0, 0)′, (0, 1)′, (1, 0)′, and

(1, 1)′ it is to decide whether the respective constellation inherits X and/or Y by strictly

applying definitions 5 and 6. Analyzing the distributions of table 1, three scenarios can be

2See figure 1 in Nelsen (1993).
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identified: Occurrence of X and Y as first, Y but not X as second, and neither X nor Y

as the third case. Since table 1 captures all possible combinations of the concepts J, R,

and E, the following three conclusions can be drawn: First, from the existence of X and Y

the existence of R. Second, from the existence of Y only the existence of R together with

E. Third, from the absence of X and Y the absence of R (and simultaneously of J). As a

consequence, a test for Y can also be used to test for radial symmetry, which is discussed

section 3.2.

3. Testing for bivariate symmetry

This section gives an overview on state-of-the-art tests for the symmetry concepts of

section 2.1 and provides rank-based tests for the new symmetry concepts of section 2.2. In

line with recent literature concerning nonparametric test for symmetry, this paper introduces

and discusses the bivariate case only. However, the underlying measure of Mangold (2015)

has originally been developed for arbitrary dimensions p. Thus, the proposed concepts can

easily be extended to dimensions p > 2 as pointed out in section 6.

3.1. Overview on tests for established symmetry concepts

The symmetry concept J has been focus of research of Li and Genton (2013), which

resulted in a nonparametric test for joint symmetry based on the empirical copula process

that tests for differences in the empirical version of equation (1). The asymptotic distribution

of the test statistic is obtained using bootstrap. Recently, many researchers interest was

on radial symmetry (R), see Hua and Joe (2011), Li and Genton (2013), Rosco and Joe

(2013), Genest and Nešlehová (2014), and Krupskii (2016) who introduced various non- and

semiparametric testing procedures as a Cramér-von-Mises-type test based on differences in

equation (2). Again, the asymptotic distribution contains Brownian bridges which requires

resampling techniques for determining critical values. Tests for exchange symmetry (E)

have been proposed by Genest et al. (2012), Li and Genton (2013), and Krupskii (2016),

who examine the performance of the respective test using a Monte-Carlo simulation.

Next, two test statistics that allow hypothesis testing for the newly introduced kinds of

symmetry are introduced.
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3.2. Tests for new symmetry concepts

First, some basic ideas and definitions are presented that are needed in order to test for

the new concepts of symmetry X and Y, starting with a new generalization of the bivariate

FGM copula:

Definition 7 (Bivariate polynomial copula, Mangold (2015)). Bivariate polynomial copulas

with parameter α > 0 and θ = (θ1, θ2, θ3, θ4)
′ ∈ Θ ⊂ R4 have the distribution function

Cα
θ = Cα

(θ1,θ2,θ3,θ4)′(u, v) = uv (1 + (1− u) (1− v)

× [((1− u) (1− v))α θ1 + ((1− u) v)α θ2 + (u (1− v))α θ3 + (uv)α θ4 ]) ,

for u, v ∈ [0, 1]. The density function of the polynomial copula is denoted as cαθ .

Figure 2 displays two density functions of the polynomial copula for different values of

α.

Figure 2: Left: Density function of the copula by Nelsen et al. (1997), which is a special case of the polynomial

copula (α = 1). Right: Density function of the polynomial copula for α = 5. Both copulas have a parameter

vector θ = (−0.15, 0.22,−0.18, 0.24)′.

However, not every vector θ ∈ R4 results in a proper copula according to definition 1 –

see Mangold (2015) for an explicit parameter space Θ if α = 1. Unfortunately, there is no
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closed form expression of Θ for α 6= 1. However, for the purpose of this article, the following

lemma is sufficient:

Lemma 1 (Admissibility). For every 0 < α <∞, there exists an ε > 0 such that θ ∈ [−ε, ε]4

is admissible and Cα
θ is a copula function according to definition 1.

Proof. Follows directly from the uniform continuity of polynomials on a closed interval [0, 1],

since θ = (0, 0, 0, 0)′ is admissible, since it results in the independence copula (see proposition

1 in Mangold (2015)).

The family of polynomial copulas contains well-known copulas as special cases (for ex-

ample the bivariate copula with cubic sections from Nelsen et al. (1997) for α = 1, see figure

2). One particular property of polynomial copulas from definition 7 is that for every value

of α > 0, the density function cαθ , evaluated at the vertices of [0, 1]2, is

cαθ(0, 0) = 1 + θ1 cαθ(0, 1) = 1− θ2 cαθ(1, 0) = 1− θ3 cαθ(1, 1) = 1 + θ4. (5)

Concisely, each parameter corresponds to exactly one vertex. The parameter α does not

affect the value in the vertices, only the shape of the density function. The higher α,

the closer to 1 is the density of the copula at the center of [0, 1]2 and the steeper is it in

regions close to the vertices. Since the density function of the independence copula is 1 for

all u, v ∈ [0, 1], θ contains information on deviations from independence in areas close to

the vertices. However, due to the curse of dimensionality and restrictions concerning the

feasibility of θ, one cannot simply estimate θ of the polynomial copula from definition 7

using maximum likelihood or kernel density estimation in higher dimensions as discussed

in Mangold (2015). Instead, Mangold (2015) introduces an alternative method to deduct

information on θ from a test statistic of a test for independence, introduced in the next

proposition 1. This new method extends the basic procedure of determining the locally

most powerful rank tests for independence (LMPRT, see Garralda-Guillén (1998); Genest

and Verret (2005) for the bivariate case) to the p-variate, multiparametric setting following

Mangold (2015). The resulting test statistic, when applied to the polynomial copula, then

contains all LMPRT statistics related to every vertex of the unit cube [0, 1]p:
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Proposition 1 (Mangold (2015)). Let (R1i, ..., Rji, ..., Rpi)
′, i = 1, ..., n, j = 1, ..., p, be the

ranks associated to a p-dimensional i.i.d sample of size n from a population with copula

function Cθ, θ ∈ R. Under assumptions A1–A4 (see Mangold (2015)), T ∗n is a locally most

powerful rank test (LMPRT) for H0 : θ = 0,

T ∗n =
1

n

n∑
i=1

T (R1i, ..., Rji, ..., Rpi)

with

T (r1, ..., rj, ..., rp) = E

[
∂

∂θ
log cθ(B)

∣∣∣∣
θ=θ0

]
,

B = (Br1 , ..., Brj , ..., Brp)′ containing independently beta distributed random variables Brj ∼

β(rj, n−rj +1), j = 1, ..., p. If H0 is true and assumptions A5 and A6 (see Mangold (2015))

are met, then

√
nT ∗n

asy→ N (θ0, σ
2(ċθ0)), with σ2(ċθ0) =

∫
(0,1)p

|ċθ0(u)|2 du.

Let Cθ be a p-dimensional, q-parametric copula, θ ⊆ Rq where θ = (0, ..., 0)′ if and only if

Cθ is the independence copula. Then, the q-dimensional vector

T = E

[
∂

∂θ
log cθ(B)

∣∣∣∣
θ=θ0

]

contains all LMPRT statistics for θ[k] = (0, 0, ..., 0, θk, 0, ..., 0)′, k = 1, ..., q. T is asymptoti-

cally normal distributed with µ = 0 and Σ(ċ0), where

Σ(ċ0)i,j =

∫
[0,1]p

(
∂cθ(u)

∂θi

∣∣∣∣
θ=0

)
×
(
∂cθ(u)

∂θj

∣∣∣∣
θ=0

)
du for i, j = 1, ..., q.

The realization of T is denoted as t, single components of T (t) as Tj (tj), j = 1, ..., q.

Proof. See Mangold (2015).

Remark 3. A Cholesky decomposition L of Σ(ċ0)−1 transforms T into its scaled version

T s := L′T .

The reduced form of the bivariate family of polynomial copulas from definition 7 (see

Mangold (2015) for the general definition for p dimensions) satisfies the assumptions A1–A6;
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therefore the proposition 1 can be applied, which results in the test statistic Tα. Note that

for θ = (0, 0, 0, 0)′, the independence copula is uniquely nested in the polynomial copula

for every α > 0 (see proposition 1 in Mangold (2015)). Conclusions from Tα on θ can be

achieved by analyzing the sign of the realization tα, since E[Tα] = θ0 = (0, 0, 0, 0)′ under the

Null hypothesis of independence according to proposition 1. For example, a positive sign of

the first entry of tα implies a higher probability for an observation occurring in an area [0, ε]2

which is close to the vertex v1 for small ε > 0 than in the case of independence, and a negative

sign for a lower probability. As a downside however, tα cannot be interpreted as vector of

estimates for the parameters of the polynomial copula anymore, but rather as a descriptive

measure for signed deviations from the density function of the independence copula evaluated

in regions close to the vertices of [0, 1]2. Knowing the asymptotic distribution of Tα allows

both, creating confidence bands for single components of tα to detect deviations from zero

and testing for joint differences of deviations from independence over all vertices. The first

can be used to order tails by thickness by directly comparing deviations from independence

in vertices, the latter is extended to a test of independence based on the joint deviation from

zero, see Mangold (2015).

In the bivariate case, one could be interested in discussing differences in the tails asso-

ciated to (0, 0)′ and (1, 1)′, to decide whether the tails are equally heavy or not. Equally

heavy tails would result in identical deviations from independence in regions close to the

vertices v1 and v4. Most of statistical measures for tail symmetry (or symmetry of tail

dependence) are neglecting potential asymmetries in the remaining two vertices (0, 1)′ and

(1, 0)′. Additional asymmetries in those vertices require specific copula families and can now

be identified comparing the second and third entry of tα. The occurrence of certain patterns

in the tails can also be used in order to choose from a set of feasible distribution families

for modeling dependence, which is further addressed in section 5.2. Note that only asymme-

tries in tails, not asymmetry in tail dependence can be detected using Tα, since polynomial

copulas themselves cannot model tail dependency (see Nelsen (2006)).

Remark 4. For small c, a vertex symmetric copula is equivalent to a copula where deviations

from the density of the independence copula are identical within a square of side length c

located at every vertex. The last statement is also true for diametrical symmetric copulas
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and vertices that are located diametrically opposed in [0, 1]2.

T s
α, the scaled version of Tα, is now used to test for symmetry under the alternative of ver-

tex and/or diametrical symmetry from section 2.2 and thus implicitly under the alternative

of radial symmetry.

Corollary 1 (Test for vertex symmetry). For a fixed value c, 0 < c < 1
2
, the pair of

hypotheses

H0 : Vertex symmetry HA : No vertex symmetry

can be tested using T s
α, the scaled statistic of proposition 1 applied to polynomial copulas,

since under H0

TXα =
1

2

(
RXT s

α

)′ (
RXT s

α

) asy∼ χ2 (3) , with RX =


1 1 0 0

0 1 −1 0

0 0 1 1

 .

H0 needs to be rejected if TXα exceeds a threshold of the χ2-distribution with 3 degrees of

freedom, corresponding to the level of the test.

Proof. If H0 is true, expected deviations from independence are identical in each vertex.

Thus, using the scaled realization tsα as a descriptive measure for deviation from indepen-

dence, we expect tsα,1 ≈ −tsα,2 ≈ −tsα,3 ≈ tsα,4, or tsα,1 ≈ −tsα,2, tsα,2 ≈ tsα,3, and −tsα,3 ≈ tsα,4

under the Null. The signs need to be added to T sα,i considering equation (5), such that T sα,i > 0

results in a greater probability than under independence, i = 1, ..., 4. By proposition 1, T s
α

is asymptotically standard normal distributed. Therefore, the difference of two components

follows N (µ = 0, σ =
√

2). The sum of the three standardized squared differences follows

asymptotically a χ2 distribution with 3 degrees of freedom.

Corollary 2 (Test for diametrical symmetry). For a fixed value c, 0 < c < 1
2
, the pair of

hypotheses

H0 : Diametrical symmetry HA : No diametrical symmetry
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can be tested using T s
α, the scaled statistic of proposition 1 applied to polynomial copulas,

since under H0

T Yα =
1

2

(
RY T s

α

)′ (
RY T s

α

) asy∼ χ2 (2) , with RY =

(
1 0 0 −1

0 1 −1 0

)
.

H0 needs to be rejected if T Yα exceeds a threshold of the χ2-distribution with 2 degrees of

freedom, corresponding to the level of the test.

Proof. If H0 is true, expected deviations from independence are identical in each diamet-

rically opposed vertex. Again, using the scaled realization tsα as a descriptive measure for

deviation from independence, we expect tsα,1 ≈ tsα,4 and tsα,2 ≈ tsα,3 under the Null. By propo-

sition 1, T s
α is asymptotically standard normal distributed. Therefore, the difference of two

components follows N (µ = 0, σ =
√

2). The sum of the two standardized squared differences

follows asymptotically a χ2 distribution with 2 degrees of freedom.

Remark 5. If one wants to test for Xc′ or Yc′, the equations of definition 5 and 6 must

hold for all values c below the threshold c′, 0 < c′ < 1
2

. Thus, testing for c′-vertex and

c′-diametrical symmetry implies testing for a sequence of values 0 < c1 < ... < cm ≤ c′ using

the tests of the corollaries 1 and 2. If H0 cannot be rejected for neither of the ck, k = 1, ...,m,

the Null hypothesis of c′-diametrical or c′-vertex symmetry cannot be rejected either.

Corollary 3 (Test for radial symmetry). Testing the pair of hypotheses of corollary 2 results

in a test for radial symmetry, described by the hypotheses

H0 : Bivariate radial symmetry HA : No bivariate radial symmetry.

H0 is rejected, if the Null hypotheses of corollary 2 is rejected at a prespecified level of error.

Proof. The rejection of radial symmetry if diametrical symmetry is rejected follows immedi-

ately from the relations between the concepts described in section 2.2. Inserting C(c, c) and

C(c, 1− c) into the definition of radial symmetry results in the equations of definition 6.

Recall that the polynomial copula family Cα
θ has a nuisance parameter α. The higher α,

the longer the density function remains close to the value of 1 as one approaches the vertices

(see figure 2). α needs to be determined before any of the testing procedure is applied.
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For practical purposes, a rule of thumb is supplied for a connection between the nuisance

parameter α of the tests and the value c of the symmetry concepts. It is based on sensitive

regions of the influence function (IF) of Tα, following Hampel (1986). The IF is a Gâteaux

derivative and measures the impact of a small contamination in a sample on a statistical

functional.

At first using a simulation, later explicitly, the impact of changes in a bivariate sample

at a point (u, v)′, u, v ∈ [0, 1], on Tα is analyzed to gain a better insight into the sensitive

regions of Tα. To avoid redundancy, this analysis has only been carried out for Tα,1, the first

element of Tα. In the following simulation, a sample size of n = 100 is chosen; the results are

stable for smaller or larger sample sizes. First, N = 5,000 samples from the independence

copula are drawn and Tα,1 is calculated for each sample for different values of α. Second, the

first observation (u1, v1)
′ of each sample is consecutively replaced by a distorting observation

(u′1, v
′
1)
′ from a grid of [0, 1]2 containing 100× 100 values. Third, T ′α,1 is calculated for each

of the 10,000 distorted samples and the differences between T ′α,1 and Tα,1 are arranged in a

matrix, again for different values of α. Finally, the 5,000 resulting 100 × 100 matrices are

averaged componentwise to obtain a simulated influence curve as shown in figure 3.

Table 2: Position c∗ of the cross-shaped transition border from figure 3 for

different α and values of an approximating function (α+ 2)−1.

α

0.5 1 2 3 4 10 25 100

c∗ 0.42 0.36 0.27 0.22 0.18 0.09 0.04 0.01

(α + 2)−1 0.40 0.33 0.25 0.20 0.17 0.08 0.04 0.01

There is an area where the functional Tα,1 reacts sensitive on changes in the sample. This

area is located in a square containing the vertex (0, 0) as expected. Interestingly, there seems

to be a cross-shaped transition border that separates this sensitive area from zones where a

change in an observation results in a negative influence on the value of Tα,1. Table 2 reports

the position c∗ of this transition border for several values of α together with a proposal for

an approximating function (α + 2)−1.

Since the test statistics of the corollaries 1 and 2 require a fixed value c, it is convenient
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Figure 3: Simulated influence functions of Tα,1 for α = 1, 2, 3, 4 and sample size n = 100. The most sensitive

area is located at the vertex (0, 0), the sensitivity increases with augmenting α. The cross-shaped transition

border from white (negative impact) to dark tinted areas (positive impact) changes, as α varies.

to choose c = c∗ such that the regions of interest in [0, 1]2 coincide with the sensitive regions

of Tα,1. Hence, α can be chosen for calibration given a value of c and vice versa. Note that

using the approximation (α + 2)−1, the requirement 0 < c < 1
2

from definitions 5 and 6

changes to α > 0, which is always true by definition 7.
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In the classical extreme value theory, the region that is considered as tail of a distribution

is located below (above) a certain threshold which is often given by a quantile. Thus, in

situations where the symmetry in tails is of special interest and shall be tested using TXα and

T Yα , c could take on values as 0.1, 0.05 or 0.01. This can be achieved by an α of 8, 18 and

88, if the approximation from table 2 is used. Note that the sensitive regions for small c are

very narrow; as in extreme value theory, a sufficiently large sample size is required to assure

observations within those regions.

Interestingly, the vector T from proposition 1 is identically to a vector of test statistics

TM resulting from a Lagrange-multiplier approach. Since TM can be embedded into the

framework of M -estimators, the influence function of its components, e.g. for the first

component, is proportional to

∂

∂θ1

[
log c(θ1,0,0,0)′(u, v)

]
θ1=0

.

Solving the latter equation for (u, v)′ leads to ((α + 2)−1, (α + 2)−1)
′
, which coincides with

the proposed function in table 2. Thus, setting c∗ = (α+2)−1 ensures that only observations

close to the vertex (0, 0)′ that are located within the square with length c∗ have a strong and

positive effect on the first component of T and thus on TXα and T Yα .

Finally, it shall be pointed out that alternatively the concepts X and Y could be tested

using a Cramér-von-Mises-type test statistic, using the average squared difference of the

equations in definition 5 and 6 based on an empirical copula process for all c ∈ [0, 0.5].

However, the computational restrictions are very high for large sample sizes and/or large

dimensions, since the amount of equations is affected exponentially by augmenting dimension

p. A more detailed research will be subject to further investigation.

4. Simulation studies

In this section, applications of the introduced tests for the symmetry concepts X and Y

are presented. Since this paper has a practice oriented focus, the majority of the presented

simulations are carried out with respect to radial symmetry. The results are compared to

other recently published nonparametric tests for radial symmetry (Li and Genton, 2013;
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Genest and Nešlehová, 2014; Krupskii, 2016). Throughout the following sections, the level

of error is fixed at 5%.

4.1. Detecting radial symmetry in distributions of Nelsen (1993)

Nelsen itemized several non-standard distributions each representing a combination of

the symmetry concepts of table 1, together with two other symmetries that are not focused

in this article. In this section, the test of corollary 3 is used to identify distributions without

the property R. Table 3 shows rejection rates for distributions with the combination of

symmetries from table 1, based on 1,000 samples of different sample sizes n and values of α.

Table 3: Simulated rejection rates for the distributions from table 1 in percent, based on 1,000

samples of size n for α = 1, 2, 3. Distributions 3 and 6 are not radially symmetric.

n = 100 n = 250 n = 1,000

Distr. α = 1 α = 2 α = 3 α = 1 α = 2 α = 3 α = 1 α = 2 α = 3

1 26.5 4.9 3.6 43.7 10.5 10.9 90.1 63.4 57.0

3 100 77.8 20.8 100 99.7 63.0 100 100 100

4 10.8 5.6 3.1 17.8 9.1 8.9 39.6 17.5 23.1

6 100 100.0 73.4 100 100 99.9 100 100 100

8 4.4 5.2 5.6 15.1 10.0 9.7 62.5 23.1 9.7

11 8.7 12.6 7.2 11.2 15.5 11.6 10.4 17.2 12.0

The distributions 3 and 6 are not radially symmetric in contrast to the remaining distri-

butions 1, 4, 6, and 11. For α = 1, 2, the overall power of rejecting radial symmetry based

on T Yα is above 75% for the investigated sample sizes. Merely α = 3 needs more observations

for a satisfyingly high power – arguably due to the lack of occurrences in the tightening

sensitivity regions for small sample sizes (see section 3.2). For radially symmetric distribu-

tions, the choice of α = 2, 3 leads to liberal test decisions for large sample sizes. However,

for moderate sample sizes the choice of α = 2, 3 can hold the desired level of 5% relatively

well. All in all, α = 2 seems to be a reasonable compromise in this kind of simulation study,

resulting in high power and reasonable compliance of the level of error.

Although the tested distributions were quite artificially, a test based on T Yα is capable of
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identifying the distributions with property R. The next section tests for radial symmetry if

a sample is drawn from a bivariate copula.

4.2. Detecting radial symmetry in copulas

This section compares established nonparametric tests for radial symmetry, such as the

one of Genest and Nešlehová (2014) which extends the work of Bouzebda and Cherfi (2012);

Rosco and Joe (2013), of Li and Genton (2013), and of Krupskii (2016). Therefore, we

benchmark the test based on the statistic T Yα against the test statistics Sn (Genest and

Nešlehová, 2014) and GR (Krupskii, 2016) in various scenarios.

First, it is investigated whether the level of error can be hold if a distribution is radially

symmetric. For this purpose we use the radially symmetric Cauchy, Frank, and Gauss

copula with parameters resulting in Kendall’s τ = 0.25, 0.5, 0.75 together with sample sizes

n = 100, 250, 500. The simulated levels of Sn, GR, and the new test for α = 1, 2, 3, 4 are

obtained from a Monte Carlo simulation with 1,000 iterations and listed in table 4. On

the one hand, Sn and the new test are generally too conservative, especially for strong

dependence and small sample sizes. On the other hand, a lower value of the parameter

α tends to reject the Null of radial symmetry too often, especially if a sample is from a

Cauchy copula. For moderate values of α and sufficiently large samples, both tests hold

the level well. GR performs consistently well for the Frank copula, independent of sample

size, and especially for strong dependence, in which case the new test and Sn are relatively

conservative. However, Krupskii (2016) does not show results for the other two investigated

copula families.

Second, the three testing procedures for R are compared by their power in case of a

sample drawn from a non radially symmetric copula family. Therefore, 1,000 samples of

size n = 100, 250, 500 are drawn from the Clayton, the Gumbel, and the skew Student t

copula with ν = 4 and a1 = a2 = 1. The parameter of each distribution varies such that it

results in a Kendall’s τ = 0.25, 0.5, 0.75. Again, Sn, GR, and the new test for α = 1, 2, 3, 4

are evaluated for each of the 1,000 samples, and the average rejection rate is calculated and

reported in table 5.
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If a sample is from the Clayton copula, this deviation can be detected best using GR,

for all n and τ . However, for larger n the new test with α > 1 and Sn are performing

equivalently. For the skew Student t copula, Sn outclasses the new test if the sample size

is relatively small. If τ is fairly large however, the choice of α > 1 results in a comparable

power to Sn in detecting the radial symmetry. No results for GR are available if the sample

is drawn from the skew Student t distribution. It generally seems that deviations from

radial symmetry induced by a sample from the Gumbel copula are detected more difficultly.

However, for weak dependence, the new test is superior to Sn and GR if the sample size is

moderately large and α = 4 – GR performs second and Sn has a low power in this setting. As

τ increases moderately, the power of GR and the new test increases simultaneously whereas

the power of Sn decreases. For larger values of τ however, the power of Sn and the new test

diminishes.

To summarize, the new test based on the statistic T Yα is suitable for detecting radial

asymmetry of various kinds. It is comparable to established nonparametric testing proce-

dures in the sense of a similar power. Apart from the intuitive geometrical understanding of

the concept, the main advantage of using this new test is the fast examination time, since

the distribution of the test statistic is easily determined and does not require critical values

needs to be obtained by a preceded Monte Carlo simulation. In some situations, either the

calculation time is limited or the mere number of tests that need to be carried out is large,

which is especially true in the context of high dimensional vine copulas. In this case, a

gain of calculation time per test can result in massive time savings. This aspect is further

discussed in section 5.2.

4.3. Detecting asymmetry of the Azzalini copula

One class of skew t-copulas, first mentioned by Joe (2006), is based on the skew t-

distribution by Azzalini and Capitanio (2003). In the centered bivariate case, four parame-

ters need to be specified: a scale parameter θ, the degrees of freedom ν, and two skewness

parameters a1 and a2. Aim of this section is testing for differences in deviations from inde-

pendence in regions of the vertices due to asymmetry rather than radial symmetry. Thus,

results are provided for TXα only. To isolate the effect of the parameters a1 and a2, the scale
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parameter θ is set to 0 in the following.
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Figure 4: Simulated power of the test for vertex symmetry (level of error 5%, c = 0.36) for a sample of size

n = 100 drawn from an Azzalini-type skew Student t copula with ν = 10 and θ = 0. Horizontal axis displays

values of a1, the vertical axis of a2.

In a simulation study, level and power of the test based on TXα is analyzed if the sample

is drawn from a bivariate Azzalini-type skew Student t copula with ν = 10 and θ = 0. The

simulation results are based on 1,000 repetitions, samples of size n = 100 and skewness
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parameters a1, a2, each varying from 0 to 2. The parameter α of the test of corollary 1 is set

to α = 1 which corresponds to c = 0.36 (see table 2). Figure 4 displays the power obtained

by the test based on TXα .

The asymmetry can be detected well if both values of a1, a2 differ from zero (bright cells in

figure 4). The more similar a1 and a2, the higher the power of the test. Notably, the power is

very low if either one parameter, a1, a2, or both are close to zero – a parameter constellation

that results in no skewness or univariate skewness only. Since the calculation of TXα is based

on the ranks of a bivariate sample, skewness imputation that only affects one or no marginal

distribution is canceled out. Therefore, only a parameter constellation that affects both

marginal distributions simultaneously is detected well by this rank based testing procedure.

Results for different values of ν, α, and θ require a more complex parameter iteration (as in

Mangold (2015)) and are not provided in this paper.

In the following section, the new tests are applied to a real data set from the insurance

market.

5. Application

The new tests from section 3.2 are now applied to an actuarial data set from Rosco

and Joe (2013) to compare the conclusions regarding the symmetry in the data. Then,

commonly used copula classes are categorized based on having the concepts X and/or Y.

This distinction finds its application in the vine copula selection process of high dimensional

vine structures.

5.1. Insurance

Here, TXα and T Yα are applied to a data set following Rosco and Joe (2013), who initially

proposed a measure of tail asymmetry which later resulted in a test statistic for radial

asymmetry of Genest and Nešlehová (2014). The data set contains 1,466 uncensored liability

claims of an insurance company (see Frees and Valdez (1998) for a detailed description of the

data): the loss resulting from an indemnity payment as well as the corresponding Allocated

Loss Adjustment Expense (ALAE).
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Figure 5: Indemnity payment (loss) and Allocated Loss Adjustment Expense (ALAE) of 1,466 liability claims

(Frees and Valdez, 1998).

At first view on the scatterplot in figure 5, it seems that observations located close to

vertex (1, 1)′ have a higher density than close to vertex (0, 0)′, implying a higher occurrence

of joint upper tail observations (high loss combined with a high ALAE) than a lower tail

observation (low loss combined with a low ALAE). This finding is underpinned by Rosco and

Joe (2013), who find significantly positive tail asymmetry for the three new measures of tail
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asymmetry. Surprisingly, there seems to be no difference between the density of occurrences

near (1, 0)′ (high loss, low ALAE) and (0, 1)′ (low loss, high ALAE). It is suggested that the

latter is less frequent than the the combination high loss, low ALAE. However, this problem

is not tackled by Rosco and Joe (2013) but will be analyzed in the following.

First, the data is tested for vertex symmetry (X), diametrical symmetry (Y), and radial

symmetry (R). For values of α = 1, 2, 3, 4, both X and Y are rejected at a level of error of

5%. Thus, referring to section 2.2, one can simultaneously reject R, again at a level of 5%.

Note that since differences in the components of tα are detected, H0 of proposition 1 does

not hold any longer. Therefore, the standard errors of the components of tα that are used

for further analysis are obtained from 10,000 bootstrap samples.

Table 6 provides the results of two kinds of confidence intervals (CI, confidence level

of 95% based on 10,000 bootstrap samples) of the standardized components of tα, each

associated to one vertex of [0, 1]2: CIi containing bootstrapped values of one single component

associated to vi, i = 1, 2, 3, 4, and CIi,j containing differences of two components associated

to vi and vj, i, j = 1, 2, 3, 4. E.g. 0 not being element of CI1 indicates a substantial deviation

from independence in v1. Further, e.g. CI1,4 not containing 0 indicates that the deviations

from independence in the vertices v1 and v4 are substantially different.

There seems to be a consistently substantial difference of tα,1 and tα,4 to zero, related to

the upper and the lower bivariate tail, irrespective of the choice of α. Thus, in both tails an

observation is more likely to occur than if the data’s marginal distributions were independent.

CI2 and CI3, corresponding to the remaining vertices (0, 1)′ and (1, 0)′, contain the value 0

only for values of α = 1, 2. This indicates that the more regions located at the vertices

are focused (by increasing α), the less the associated components of tsα are distinguishable

from zero. Note that due to the signs of the density values of the vertices in equation (5),

the positive values of tα,2 and tα,3, related to the vertices v2 and v3, indicate a less likely

occurrence than in the case of independence.

Next, the data is pairwisely analyzed regarding differences in tsα between the upper/lower

tail respectively between the vertices (0, 1)′ and (1, 0)′. Again, the results are presented in

table 6. Irrespective of the choice of α, there is strong evidence for a difference in the tails

corresponding to (1, 1)′ and (0, 0)′: Observations in the upper tail seems to occur more often
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Table 6: Standardized values of tα, where v1 = (0, 0)′ corresponds to tsα,4, v4 = (1, 1)′ to tsα,1,

respectively v2 = (0, 1)′ to tsα,2, and v3 = (1, 0)′ to tsα,3. Simulated confidence intervals (CI,

obtained using 10,000 bootstrap samples) based on the components of tsα at a confidence level of

95%: Analysis if CIi of a single component or CIi,j of differences in two components contains the

value 0, i, j = 1, 2, 3, 4. E.g. 0 /∈ CI1 gives evidence for substantial deviation from independence

in vertex v1, 0 /∈ CI1,2 indicates no difference in deviation from independence between v1 and

v4.

Loss-ALAE α = 1 α = 2

v1 v4 v2 v3 v1 v4 v2 v3

tsα 9.85 14.38 4.66 6.52 6.66 17.29 3.46 4.29

Standard error 0.91 0.77 0.52 0.50 0.65 1.44 0.42 0.38

0 /∈ CIi Yes Yes Yes Yes Yes Yes Yes Yes

0 /∈ CIi,j Yes No Yes No

α = 3 α = 4

v1 v4 v2 v3 v1 v4 v2 v3

tsα 4.87 15.87 1.59 1.39 3.74 14.65 0.47 −0.28

Standard error 0.82 1.38 0.20 0.59 1.30 1.04 0.49 0.26

0 /∈ CIi Yes Yes No No Yes Yes No No

0 /∈ CIi,j Yes No Yes No

than in the lower tail. This result is essentially identical to the result of Rosco and Joe

(2013), who find a significantly positive tail asymmetry based on evaluating their measure

of skewness. Furthermore, CI2,3 does always contain the value 0, which indicates that there

seems to be an identical deviation from independence within the regions close to (0, 1)′ and

(1, 0)′ for any α.

Considering this finding, one would not choose a radially symmetric copula function

for modeling the relationship between loss and ALAE, such as the Gaussian or Student t

distribution. The next section gives an overview on families of bivariate copulas that are

used in practice, mainly in the context of vine copulas, and classifies them according to the

occurrence of the symmetry concepts X and Y from the definitions 5 and 6.
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5.2. Vine copula selection

Nikoloulopoulos et al. (2012) classify copulas into six groups using different patterns of

occurrence of tail dependencies. They propose that for diagnostic purposes, a range of copula

families can be fitted to data and determine properties of the class containing the copula

resulting in the smallest information criterion (e.g. AIC by Akaike (1974) or BIC by Schwarz

(1978)). Then, the group that includes this copula is suggested to be adequate for the data.

The six groups are: copulas with (a) tail independence, (b) intermediate tail dependence, (c)

upper tail dependence only, (d) lower tail dependence only, (e) radial symmetry, (f) strong

but different upper and lower tail dependence.

Turning the order around, one could use this classification scheme to downsize the com-

putational expenditure in the vine copula selection process. Fitting a p-dimensional vine

copula includes fitting p(p− 1)/2 bivariate copulas out of a set of potential copula families.

This is computationally cumbersome, especially for high dimensions and large sets of fami-

lies. Addressing this problem, one could first test if there is some kind of symmetry in the

data and then restrict the set of potential copula families to that group which possesses the

tail dependence constellation that has been found in the data. Note that in the following

rotations of copula models are allowed, which makes e.g. the Gumbel copula feasible for (c)

with 0 degree rotation – and for (d) with 180 degrees rotation.

In each bivariate fitting step, the following set of decision rules could be applied in order

to reduce computation time: At the beginning, start with a test for X and Y. One of three

possible constellations can occur: Firstly, if neither X nor Y can be rejected, a radially

symmetric copula from (a), (b), or (e) should be fitted to the data, that gives the same

probability to realizations within regions close to the vertices. Examples for such copula

families are the independent, the Gauss, or the symmetric Student t copula, all with a

dependence parameter close to zero or the parabola copula from remark 2. Secondly, if only

X is rejected, it is suggested that realizations within regions close to diametrically opposed

vertices occur with equal probability. Thus, copulas from (a), (b), or (e) (except the parabola

copula), allowing for stronger dependencies, are suitable for the fitting process, along with

rotations of 90, 180, and 270 degrees. Thirdly, if X and Y need to be rejected, there are

several possible cases that can be identified comparing the entries of tsα from section 5.1.
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These are listed in table 7.

Table 7: Possible constellations if X and Y are rejected. vi, i = 1, 2, 3, 4, denotes the four

vertices of the unit square [0, 1]2: v1 = (0, 0)′, v2 = (0, 1)′, v3 = (1, 0)′, and v4 = (1, 1)′.

The (in-)equality signs >, < and = are based on the CIs (confidence level 95%) that are

constructed using the asymptotic distribution of T α, e.g. tsα,1 < tsα,4 holds if all values in

CI1,4 are negative.

Cases tsα Rotations (degrees)

v1 v4 v3 v2 0 90 180 270

I tsα,1 < tsα,4 and tsα,3 = tsα,2 (c)(f) - (d)(f) -

II tsα,1 > tsα,4 and tsα,3 = tsα,2 (d)(f) - (c)(f) -

III tsα,1 = tsα,4 and tsα,3 > tsα,2 - (c)(f) - (d)(f)

IV tsα,1 = tsα,4 and tsα,3 < tsα,2 - (d)(f) - (c)(f)

V any other constellation best fit (a) – (e), all rotations

Note that as an example in case I, having a heavier upper tail with rotation 0 degrees

is equivalent to having a heavier lower tail with 180 degrees rotation. Fourthly, if case V of

table 7 is selected, all potentially feasible copulas are fitted to the data with every rotation

and the family that results in the smallest information criterion is selected.

6. Outlook

In this article two new concepts of symmetry for bivariate copulas, X and Y, have been

introduced. Both concepts are focused on regions of the unit square [0, 1]2 that are located

near the four vertices. A copula has the property X, if the probability of an observation in

a square located in each vertex is equally likely. The property Y characterizes a copula in

which probabilities of an observation in a square located in diametrically opposed vertices

is equally likely. It has been shown, that the new concept Y is related to radial symmetry

(R), which is supposed to be the most natural form of symmetry for copulas (Nelsen, 1993).

If a copula does not exhibits Y, it can be concluded that R is neither possessed.

A new generalization of the FGM-copula has been introduced that allows to model the

probabilistic behavior in each tail of arbitrary dimension separately using one parameter
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each. Due to the curse of dimensionality and admissibility restrictions of the parameters,

classical estimation procedures fail if information about every parameter is deducted from

data. Thus, a vector Tα containing a collection of locally most powerful rank tests for

independence has been derived for each single parameter, associated to one and only one

vertex (following Garralda-Guillén (1998), Genest and Verret (2005), and Mangold (2015)).

Even though the entries of Tα itself cannot be interpreted as parameters of the polynomial

copula anymore, they provide information on whether or not occurrences within a region

close to the vertices are more or less likely than in the case of independence. Deviations

from this probability under independence can be compared among one another and have

been used used to test for the two new symmetry concepts X, Y, and radial symmetry.

A connection between the additional parameter of the polynomial copula family and the

symmetry concepts X and Y has been motivated.

In several simulation studies the power of the test for diametrical symmetry as a test for

radial symmetry has been analyzed. First, several constellations of three other symmetries

for copulas have been considered and the power of the new test for radial symmetry has

been inspected. Second, the power of the new test has been compared to that of other

nonparametric tests of radial symmetry that are of interest in recent literature (see Genest

and Nešlehová (2014), Krupskii (2016)). Third, the power of the test for vertex symmetry

has been examined in case a sample is drawn from a bivariate skew Azzalini-type Student

t copula (Azzalini and Capitanio, 2003; Joe, 2006) to detect skewness in the data. In all

three simulations, the new tests show considerably large power in combination with short

calculation time, which can justify the usage of the new procedures in practical applications.

The realization tsα has been calculated for a data set from the insurance sector (Frees

and Valdez, 1998), and conclusions based on TXα , T Yα , and by comparing differences in the

entries of tsα have been drawn. It has been shown that the conclusions are identical to those

based on other state-of-the-art measures for asymmetry in tails (see Rosco and Joe (2013)).

Subsequently, a possible improvement of the selection process employed by vine copula

fitting procedures has been proposed, eliminating copulas from a set of potential candi-

dates that do not inherit the symmetry structure which was found in the data (following

Nikoloulopoulos et al. (2012)). This approach focuses high dimensional vine copula fitting
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processes, for which reduction of calculation time is crucial due to the exponentially increas-

ing amount of pairwise copulas that need to be fitted.

Overall, testing for radial symmetry using T Yα seems to be a viable alternative to other

state-of-the-art tests, due to the fast calculation of critical values or p-values of the χ2-

distribution, and hence the test decision. Regular nonparametric tests for radial symmetry

require a computationally time intense Monte Carlo simulation for determining critical values

which can be a knock-out criterion in time critical applications and/or high dimensions.

Note that having introduced the new concepts of symmetry in the bivariate case only, a

generalization to arbitrary dimensions is straightforward while remaining intuitive: For a

p-dimensional copula, the property X is equivalent to having the identical probability of

observing an outcome within areas located in every vertex of the unitcube [0, 1]p. Y stands

for the identical probability of observing an outcome within areas located in vertices of [0, 1]p

that are diametrically opposed. A test for X for a p-dimensional copula compares tα,i ≈ tα,j,

i 6= j, i, j = 1, ..., p, while a test for Y would compare tα,j ≈ tα,d−j+1∀j ∈ 1, ..., 2p−1. Even

in dimensions p � 2, testing for vertex and diametrical symmetry is possible with few

computational effort. This poses a sound alternative to previous approaches on handling

symmetry in higher dimensions, as pairwise radial symmetry, and will be subject of further

research.

Software

All calculations and graphics have been accomplished using R (R Core Team, 2016, version

3.3.1) including the packages listed in table 8.

Bibliography

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on

Automatic Control, 19(6):716–723.

Auguie, B. (2016). gridExtra: Miscellaneous Functions for ”Grid” Graphics. R package

version 2.2.1.

31



Table 8: R-packages used for calculations and graphics.

R package Authors of the R package

copula Hofert et al. (2016)

dplyr Wickham and Francois (2016)

ggplot2 Wickham (2009)

gridExtra Auguie (2016)

Hmisc Harrell Jr et al. (2016)

Rcpp Eddelbuettel and Francois (2016)

sn Azzalini (2016)

Azzalini, A. (2016). The R package sn: The Skew-Normal and Skew-t distributions. Univer-
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Figure 6: Scatterplot of a random sample of distributions that have the constellations of symmetry listed in

table 1.
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